留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同金属氧化物对钴基费托合成催化剂性能的影响

李博翔 王俊刚 王强 张伟 刘岩 马占骋 马中义 侯博

李博翔, 王俊刚, 王强, 张伟, 刘岩, 马占骋, 马中义, 侯博. 不同金属氧化物对钴基费托合成催化剂性能的影响[J]. 燃料化学学报(中英文), 2023, 51(10): 1411-1420. doi: 10.19906/j.cnki.JFCT.2023018
引用本文: 李博翔, 王俊刚, 王强, 张伟, 刘岩, 马占骋, 马中义, 侯博. 不同金属氧化物对钴基费托合成催化剂性能的影响[J]. 燃料化学学报(中英文), 2023, 51(10): 1411-1420. doi: 10.19906/j.cnki.JFCT.2023018
LI Bo-xiang, WANG Jun-gang, WANG Qiang, ZHANG Wei, LIU Yan, MA Zhan-cheng, MA Zhong-yi, HOU Bo. Study on the effect of different metal oxides on the performance of cobalt-based Fischer-Tropsch catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1411-1420. doi: 10.19906/j.cnki.JFCT.2023018
Citation: LI Bo-xiang, WANG Jun-gang, WANG Qiang, ZHANG Wei, LIU Yan, MA Zhan-cheng, MA Zhong-yi, HOU Bo. Study on the effect of different metal oxides on the performance of cobalt-based Fischer-Tropsch catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(10): 1411-1420. doi: 10.19906/j.cnki.JFCT.2023018

不同金属氧化物对钴基费托合成催化剂性能的影响

doi: 10.19906/j.cnki.JFCT.2023018
基金项目: 山西省基础研究计划(202103021224444),中央引导地方科技发展资金(YDZJSX2021C041)和国家自然科学基金(22179136,22279155,22279156)资助
详细信息
    通讯作者:

    Tel: 0351-4040428, E-mail: mazhgyi@sxicc.ac.cn

    houbo@sxicc.ac.cn

  • 中图分类号: O643

Study on the effect of different metal oxides on the performance of cobalt-based Fischer-Tropsch catalysts

Funds: The project was supported by the Basic Research Program of Shanxi Province (202103021224444), Central Guidance for Local Science and Technology Development Funds (YDZJSX2021C041) and National Natural Science Foundation of China (22179136,22279155,22279156)
  • 摘要: 本实验在六方纳米片状的Co3O4(NMS-Co)上分别负载了1%含量的ZrO2、Al2O3和MnO2三种金属氧化物,制备反相催化剂模型,研究金属氧化物对钴基催化剂费托合成性能的影响。通过H2-TPD、CO-TPD以及催化剂性能评价结果发现,ZrO2和Al2O3能够显著增加NMS-Co催化剂的活性位点,在相同转化率条件下,反应温度从230℃分别降低至170、180 ℃,重质烃生成速率分别提升2.5、2倍,CH4选择性从37.8%分别降低至3.6%、12.0%。然而,MnO2使得NMS-Co催化剂CO转化率仅从30.9%增加到45.5%,CH4选择性降低至16.5%。
  • FIG. 2700.  FIG. 2700.

    FIG. 2700.  FIG. 2700.

    图  1  负载不同金属氧化物催化剂的XRD谱图

    Figure  1  XRD patterns of catalysts loaded with different metal oxides (a): fresh catalyst; (b): catalyst after reductive passivation; (c): catalyst after FTS reaction

    图  2  NMS-Co((a1)、(a2))、NMS-Co-1Zr((b1)、(b2))、NMS-Co-1Al((c1)、(c2))、NMS-Co-1Mn((d1)、(d2))的SEM照片和颗粒粒径分布

    Figure  2  SEM photos and grain size distribution map of NMS-Co ((a1), (a2)), NMS-Co-1Zr ((b1), (b2)), NMS-Co-1Al ((c1), (c2)), NMS-Co-1Mn((d1), (d2))

    图  3  NMS-Co((a1)、(a2))、NMS-Co-1Zr((b1)、(b2))、NMS-Co-1Al((c1)、(c2))、NMS-Co-1Mn((d1)、(d2))的TEM照片和晶格条纹以及晶面间距统计

    Figure  3  TEM photos, lattice stripes and crystal plane spacing statistic of NMS-Co ((a1), (a2)), NMS-Co-1Zr ((b1), (b2)), NMS-Co-1Al ((c1), (c2)), NMS-Co-1Mn ((d1), (d2))

    图  4  负载不同金属氧化物催化剂的H2-TPR谱图

    Figure  4  H2-TPR profiles of catalysts loaded with different metal oxides

    图  5  负载不同金属氧化物催化剂的拉曼光谱谱图

    Figure  5  Raman spectra of catalysts loaded with different metal oxides

    图  6  催化剂的Co 2p 、O 1s 、Zr 3d 、Al 2p 、Mn 2p XPS光谱谱图

    Figure  6  XPS spectra of Co 2p , O 1s , Zr 3d , Al 2p , Mn 2p of the catalysts

    图  7  (a)负载不同金属氧化物催化剂CO化学吸附曲线; (b)负载不同金属氧化物催化剂H2化学吸附曲线; (c)负载不同金属氧化物催化剂TG曲线; (d)负载不同金属氧化物催化剂d(TG)曲线

    Figure  7  (a) CO chemisorption curves of catalysts loaded with different metal oxides; (b) H2 chemisorption curves of catalysts loaded with different metal oxides; (c) TG curves of catalysts loaded with different metal oxides; (d) d(TG) curves of catalysts loaded with different metal oxides

    图  8  负载不同金属氧化物催化剂C5 + 生成速率(STY)

    Figure  8  FTS rate to STY loaded with different metal oxide catalysts

    表  1  催化剂的物理化学性质

    Table  1  Physical and chemical properties of catalyst

    CatalystXRDSEMReducibility
    /% c
    H2 uptake / (μmol·gcat−1) d
    d(Co3O4) a
    /nm
    d(Co3O4) b
    /nm
    NMS-Co24.1205.54100
    NMS-Co-1Zr23.9199.079323.27
    NMS-Co-1Al19.9157.507850.44
    NMS-Co-1Mn20.0157.48997.5
    a: crystallite size was calculated by the Scherrer formula based on the strongest diffraction (2θ=36.8°), b: cobalt particle size calculated from the SEM measurement of catalyst samples, c: Reducibility calculated TPR from 200 to 400 ℃, d: By H2-chemisorption method
    下载: 导出CSV

    表  2  催化剂的XPS表征

    Table  2  XPS results of catalyst

    SampleBinding energy /eV
    Co 2p3/2Co 2p1/2OVOLZr 3dAl 2pMn 2p
    NMS-Co780.1795.0530.2531.9
    NMS-Co-1Zr780.0795.1530.1531.6182.3
    NMS-Co-1Al779.5794.5529.7531.473.9
    NMS-Co-1Mn779.9794.9530.1531.6641.9
    下载: 导出CSV

    表  3  不同催化剂中各组分的含量

    Table  3  Analysis of the content of each component in different catalysts

    CatalystCoNaZrAlMn
    NMS-Co0.890.1
    NMS-Co-1Zr0.900.080.01
    NMS-Co-1Al0.910.070.01
    NMS-Co-1Mn0.910.070.01
    下载: 导出CSV

    表  4  催化剂的FTS反应性能

    Table  4  FTS reaction performance of catalyst

    CatalystTemp. /
    CO conv. /%Product selectivity /%
    CH4C2–C4C5 +
    NMS-Co23030.937.822.739.5
    NMS-Co-1Zr17032.93.65.491.0
    NMS-Co-1Al18031.512.012.575.5
    NMS-Co-1Mn23045.516.530.752.8
    Reaction conditions:H2/CO=2, p=2 MPa,GHSV=1000 h−1,TOS=48 h
    下载: 导出CSV
  • [1] ZHONG M, YANG P, HOU B, XIA M, WANG J. Tuning the catalytic performance of Fischer-Tropsch synthesis by regulating the Al2O3-layer over Co/Al2O3/Al catalysts[J]. Fuel,2022,314:122136. doi: 10.1016/j.fuel.2021.122136
    [2] KOO H M, AHN C-I, LEE D H, ROH H S, SHIN C H, KYE H, BAE J W. Roles of Al2O3 promoter for an enhanced structural stability of ordered-mesoporous Co3O4 catalyst during CO hydrogenation to hydrocarbons[J]. Fuel,2018,225:460−471. doi: 10.1016/j.fuel.2018.03.175
    [3] POUR A N, SHAHRI S M K, BOZORGZADEH H R, ZAMANI Y, TAVASOLI A, MARVAST M A. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2008,348(2):201−208. doi: 10.1016/j.apcata.2008.06.045
    [4] HE L, TENG B, ZHANG Y, FAN M. Development of composited rare-earth promoted cobalt-based Fischer-Tropsch synthesis catalysts with high activity and selectivity[J]. Appl Catal A: Gen,2015,505:276−283. doi: 10.1016/j.apcata.2015.07.041
    [5] LI Y, QIN X, WANG T, MA L, CHEN L, TSUBAKI N. Fischer Tropsch synthesis from H2-deficient biosyngas over Mn added Co/SiO2 catalysts[J]. Fuel,2014,136:130−135. doi: 10.1016/j.fuel.2014.06.048
    [6] PIAO Y, JIANG Q, LI H, MATSUMOTO H, LIANG J, LIU W, PHAM-HUU C, LIU Y, WANG F. Identify Zr promotion effects in atomic scale for Co-based catalysts in Fischer-Tropsch synthesis[J]. ACS Catal,2020,10(14):7894−7906. doi: 10.1021/acscatal.0c01874
    [7] ALAYAT A, ECHEVERRIA E, SOTOUDEHNIAKARANI F, MCLIROY D N, MCDONALD A G. Alumina coated silica nanosprings (NS) support based cobalt catalysts for liquid hydrocarbon fuel production from syngas[J/OL]. Materials, 2019: 12(11).
    [8] FELLER A, CLAEYS M, STEEN E V. Cobalt cluster effects in zirconium promoted Co/SiO2 Fischer-Tropsch catalysts[J]. J Catal,1999,185(1):120−130. doi: 10.1006/jcat.1999.2497
    [9] JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal,2016,6(1):100−114. doi: 10.1021/acscatal.5b02205
    [10] ZHAO Z, LU W, ZHU H, DONG W, LYU Y, LIU T, CHEN X, WANG Y, DING Y. Tuning the Fischer-Tropsch reaction over CoxMnyLa/AC catalysts toward alcohols: Effects of La promotion[J]. J catal,2018,361:156−167. doi: 10.1016/j.jcat.2018.02.008
    [11] JIANG F, WANG S, ZHENG J, LIU B, XU Y, LIU X. Fischer-Tropsch synthesis to lower α-olefins over cobalt-based catalysts: Dependence of the promotional effect of promoter on supports[J]. Catal Today,2021,369:158−166. doi: 10.1016/j.cattod.2020.03.051
    [12] JOHNSON G R, WERNER S, BELL A T. An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer-Tropsch synthesis: Evidence for enhanced CO adsorption and dissociation[J]. ACS Catal,2015,5(10):5888−5903. doi: 10.1021/acscatal.5b01578
    [13] PEDERSEN E Ø, SVENUM I-H, BLEKKAN E A. Mn promoted Co catalysts for Fischer-Tropsch production of light olefins – An experimental and theoretical study[J]. J Catal,2018,361:23−32. doi: 10.1016/j.jcat.2018.02.011
    [14] QIN Ch, HOU B, WANG J, WANG Q, YU M, CHEN C, JIA L, LI D. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts[J]. ACS Catal,2018,8(10):9447−9455. doi: 10.1021/acscatal.8b01333
    [15] ZHANG Z, WANG F, JIANG J, ZHU H, DU Y, FENG J, LI H, JIANG X. LDH derived Co-Al nanosheet for lipid hydrotreatment to produce green diesel[J]. Fuel,2023,333:126341. doi: 10.1016/j.fuel.2022.126341
    [16] PETERSEN A P, CLAEYS M, KOOYMAN P J, STEEN E V. Cobalt-based Fischer-tropsch synthesis: A kinetic evaluation of metal-support interactions using an inverse model system[J]. Catalysts, 2019, 9(10): 794.
    [17] PETERSEN A P, FORBES R P, GOVENDER S, KOOYMAN P J, STEEN E V. Effect of alumina modification on the reducibility of Co3O4 crystallites studied on inverse-model catalysts[J]. Catal Lett,2018,148(4):1215−1227. doi: 10.1007/s10562-018-2332-5
    [18] ARNOLDY P, MOULIJN J A. Temperature-programmed reduction of CoOAl2O3 catalysts[J]. J Catal,1985,93(1):38−54. doi: 10.1016/0021-9517(85)90149-6
    [19] NAVARRO V, VAN SPRONSEN M A, FRENKEN J W M. In situ observation of self-assembled hydrocarbon Fischer-Tropsch products on a cobalt catalyst[J]. Nat Chem,2016,8(10):929−934. doi: 10.1038/nchem.2613
    [20] LI W, NIE X, YANG H, FELIPE P G, WU Z, ZHU J, WANG J, LIU Y, SHI C, SONG C, GUO X. Crystallographic dependence of CO2 hydrogenation pathways over HCP-Co and FCC-Co catalysts[J]. Appl Catal B: Environ,2022,315:121529. doi: 10.1016/j.apcatb.2022.121529
    [21] XING X, CHEN S, WANG C, LYN R, ZHANG D, ZHANG Y, LIU C, LI J, HONG J. Co3O4 nanowire arrays grown on carbon nanotube-based films for Fischer-Tropsch synthesis[J]. ACS Appl Nano Mater,2021,4(8):7811−7819. doi: 10.1021/acsanm.1c01122
    [22] JEAN-MARIE A, GRIBOVAL-CONSTANT A, KHODAKOV A Y, MONFLIER E, DIEHL F. β-Cyclodextrin for design of alumina supported cobalt catalysts efficient in Fischer-Tropsch synthesis[J]. Chem Commun,2011,47(38):10767−10769. doi: 10.1039/c1cc13800f
    [23] XIAO T, LIU X, XU G, ZHANG Y. Phase tuning of ZrO2 supported cobalt catalysts for hydrodeoxygenation of 5-hydroxymethylfurfural to 2, 5-dimethylfuran under mild conditions[J]. Appl Catal B: Environ,2021,295:120270. doi: 10.1016/j.apcatb.2021.120270
    [24] LIU G, SUN H, WANG H, QU Z. Rational tuning towards B-sites (B = Mn, Co, Al) on CoB2O4 binary oxide for efficient selective catalytic oxidation of ammonia[J]. Chem Eng J,2023,453:139941. doi: 10.1016/j.cej.2022.139941
    [25] CAI F, SONG X, WU Y, ZHANG J, XIAO G. Selective hydrogenolysis of glycerol over acid-modified Co-Al catalysts in a fixed-bed flow reactor[J]. ACS Sustainable Chem Eng,2018,6(1):110−118. doi: 10.1021/acssuschemeng.7b01233
    [26] ZHANG Q, GUO H, HOU B, WANG J, LI D, JIA L. Effects of Mn and Zr promoters on the performance of ordered mesoporous carbon supported Co catalyst in Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2017,45(6):682−688.
    [27] PRINS R. Hydrogen spillover. Facts and fiction[J]. Chem Rev,2012,112(5):2714−2738. doi: 10.1021/cr200346z
    [28] ENACHE D I, ROY-AUBERGER M, REVEL R. Differences in the characteristics and catalytic properties of cobalt-based Fischer-Tropsch catalysts supported on zirconia and alumina[J]. Appl Catal A: Gen,2004,268(1):51−60.
    [29] YANG S, LI M, NAWAZ M A, SONG G, XIAO W, WANG Z, LIU D. High selectivity to aromatics by a Mg and Na Co-modified catalyst in direct conversion of syngas[J]. ACS Omega,2020,5(20):11701−11709. doi: 10.1021/acsomega.0c01007
    [30] FOPPA L, COPÉRET C, COMAS-VIVES A. Increased back-bonding explains step-edge reactivity and particle size effect for CO activation on Ru nanoparticles[J]. J Am Chem Soc,2016,138(51):16655−16668. doi: 10.1021/jacs.6b08697
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1144
  • HTML全文浏览量:  199
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-14
  • 修回日期:  2023-02-28
  • 录用日期:  2023-03-03
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-10-10

目录

    /

    返回文章
    返回