留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水热环境下甲烷生成路径及催化剂稳定性综述

王鹏程 赵雪 于洁

王鹏程, 赵雪, 于洁. 水热环境下甲烷生成路径及催化剂稳定性综述[J]. 燃料化学学报(中英文), 2023, 51(8): 1035-1046. doi: 10.19906/j.cnki.JFCT.2023019
引用本文: 王鹏程, 赵雪, 于洁. 水热环境下甲烷生成路径及催化剂稳定性综述[J]. 燃料化学学报(中英文), 2023, 51(8): 1035-1046. doi: 10.19906/j.cnki.JFCT.2023019
WANG Peng-cheng, ZHAO Xue, YU Jie. The reaction pathway of methane and catalyst stability under supercritical water[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1035-1046. doi: 10.19906/j.cnki.JFCT.2023019
Citation: WANG Peng-cheng, ZHAO Xue, YU Jie. The reaction pathway of methane and catalyst stability under supercritical water[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1035-1046. doi: 10.19906/j.cnki.JFCT.2023019

水热环境下甲烷生成路径及催化剂稳定性综述

doi: 10.19906/j.cnki.JFCT.2023019
基金项目: 国家自然科学基金面上项目(52176186)和国家级大学生创新创业训练计划(202210487123)资助
详细信息
    通讯作者:

    E-mail: yujie@hust.edu.cn

  • 中图分类号: TK6; O643.36

The reaction pathway of methane and catalyst stability under supercritical water

Funds: The project was supported by the National Natural Science Foundation of China (52176186) and National Innovation and Entrepreneurship Training Program for University Students (202210487123)
  • 摘要: 在超临界水条件下,生物质及固废气化转化为H2或者CH4等气体产物是其高值化利用的重要手段。鉴于高温高压的复杂水热环境以及生物质和固废的复杂组分,超临界水气化制气目前仍存在一些亟需解决的关键科学问题。在超临界水条件下,为了促进原料尽可能的定向转化为目标产物,如H2和CH4等,通常制备各种不同功能的催化剂并加入反应过程以实现目标产物的最大化,如Al2O3、SiO2、TiO2、ZrO2、MgO、Y2O3、CeO2、Si-Al、Zeolite、碳纳米管以及活性炭等不同载体负载不同活性组分(Cr、Ni、Zn、Ru、Rh)的催化剂。因而在水热环境下,尤其在超临界水条件下,催化剂的长期稳定运行十分重要。因此本论文针对目前超临界水环境下常用催化剂载体的稳定性以及活性金属组分失活等现象进行了探讨,以期对于超临界水环境下高稳定性催化剂的选取提供理论指导。在超临界水条件下,催化剂对于含碳原料的裂解、甲烷化以及水煤气变化反应程度的影响决定了系统整体气化效率;但甲烷的生成机制仍不明确,因而本论文重点探讨了甲烷的生成机制以及催化剂对甲烷的作用机制。
  • FIG. 2570.  FIG. 2570.

    FIG. 2570.  FIG. 2570.

    图  1  水的三相图及物性变化[2]

    Figure  1  Three-phase diagram of water and changes in physical properties[2]With permission from Royal Society Chemistry

    图  2  氧化铝水合物的脱羟基机理[13]

    Figure  2  Dehydroxylation sequences of alumina hydrates[13]With permission from American Society Chemistry

    图  3  不同催化剂在超临界水中的稳定性 (>400 ℃)[6]

    Figure  3  Stability of different catalysts in supercritical water (>400 ℃)[6]With permission from Royal Society Chemistry

    图  4  超临界水生物质反应路径示意图

    Figure  4  Biomass reaction pathway in supercritical water

    图  5  超临界水条件下动物排泄物理论反应产物[19]

    Figure  5  Theoretical reaction products of animal excreta in supercritical water (pressure: 24 MPa)[19]with permission from Elsevier

    图  6  超临界水条件下生物质催化转化路径 (路径I:C–C 断裂生成 C–O*;路径II:C–O 断裂生成及氢化生成甲烷与乙烷;路径III:水煤气变换反应;路径IV:甲烷与费托合成)[27]

    Figure  6  Catalytic conversion pathways of biomass in supercritical water (Pathway I: C–C fracture to C–O*; Pathway II: C–O fracture and hydrogenation to methane and ethane; Pathway III: water gas conversion reaction; Pathway IV: methane and Fischer-Tropsch synthesis) [27]With permission from Elsevier

    图  7  Ru的催化机理[45]

    Figure  7  Catalytic mechanism of Ru [45]With permission from Royal Society Chemistry

    图  8  Ni氧化流失机理

    Figure  8  Mechanism of Ni oxidation lossWith permission from Elsevier

    表  1  超临界水环境下不同催化剂BET比表面积变化率[10, 11]

    Table  1  BET surface area change of catalysts in supercritical water[10, 11]

    ZSM-5HYBetaRu/γ-Al2O3Ru/TiO2Ru/C
    BET surface area /%−10.1−90.6−83.9−93.7−8.3 + 1.4
    下载: 导出CSV

    表  2  超临界水环境下催化剂的稳定性[6]

    Table  2  Stability of catalysts in supercritical water[6]

    CatalystSupercritical waterStructural changes (Y/N)
    temperature /℃pressure /atmtime /h
    γ-Al2O3350197.4NAY
    Al2O3, SiO2, activated carbon500276.30.25Y
    Mono-, bi-metallic Ir, Pt , Pt-Ni/γ-Al2O3450246.70.25Y
    TiO2, ZrO2, Ce-ZrO2500276.30.25N
    Pt/CNT450246.76N
    下载: 导出CSV
  • [1] ABU EL-RUB Z, BRAMER E A, BREM G. Review of catalysts for tar elimination in biomass gasification processes[J]. Ind Eng Chem Res,2004,43(22):6911−6919. doi: 10.1021/ie0498403
    [2] LANE M K M, ZIMMERMAN J B. Controlling metal oxide nanoparticle size and shape with supercritical fluid synthesis[J]. Green Chem,2019,21(14):3769−3781. doi: 10.1039/C9GC01619H
    [3] 田宜灵, 冯季军, 秦颖, 陈丽, 房金刚. 超临界水的性质及其在化学反应中的应用[J]. 化学通报,2002,(6):396−402. doi: 10.14159/j.cnki.0441-3776.2002.06.006

    TIAN Yi-ling, FENG Ji-jun, QIN Ying, CHEN Li, FANG Jin-gang. The properties of supercritical water and its application in chemical reaction[J]. Chem Bull,2002,(6):396−402. doi: 10.14159/j.cnki.0441-3776.2002.06.006
    [4] GUO Y, WANG S Z, XU D H, GONG Y M, MA H H, TANG X Y. Review of catalytic supercritical water gasification for hydrogen production from biomass[J]. Renewable Sustainable Energy Rev,2010,14(1):334−43. doi: 10.1016/j.rser.2009.08.012
    [5] 孙冰洁, 杜新, 张荣, 毕继诚. KOH对超临界水中褐煤连续制氢的影响[J]. 燃料化学学报,2010,38(5):518−521. doi: 10.3969/j.issn.0253-2409.2010.05.002

    SUN Bing-jie, DU Xin, ZHANG Rong, BI Ji-cheng. Effect of KOH on hydrogen production from lignite in a continuous supercritical water reactor[J]. J Fuel Chem Technol,2010,38(5):518−521. doi: 10.3969/j.issn.0253-2409.2010.05.002
    [6] XIONG H, PHAM H N, DATYE A K. Hydrothermally stable heterogeneous catalysts for conversion of biorenewables[J]. Green Chem,2014,16(11):4627−4643. doi: 10.1039/C4GC01152J
    [7] AZADI P, AFIF E, AZADI F, FARNOOD R. Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose[J]. Green Chem,2012,14(6):1766−1777. doi: 10.1039/c2gc16378k
    [8] FURUSAWA T, SATO T, SAITO M, ISHIYAMA Y, SATO M, ITOH N, SUZUKI N. The evaluation of the stability of Ni/MgO catalysts for the gasification of lignin in supercritical water[J]. Appl Catal A: Gen,2007,327(2):300−310. doi: 10.1016/j.apcata.2007.05.036
    [9] 喻江东, 陈秋玲, 孙胜, 关清卿, 宁平, 谷俊杰. 生物质超临界水气化制氢过渡金属催化剂研究进展[J]. 高分子通报,2015,(189):19−24. doi: 10.14028/j.cnki.1003-3726.2015.01.004

    (YU Jiang-dong, CHEN Qiu-ling, SUN Sheng, GUAN Qing-qing, NING Ping, GU Jun-jie. Advance in the transition metals catalysts for hydrogen production by biomass gasification in supercritical water[J]. Polym Bull,2015,(189):19−24. doi: 10.14028/j.cnki.1003-3726.2015.01.004
    [10] ZHANG Y, LI Y, GU J, TIAN S, NING P. Hydrothermal stability of different zeolites in supercritical water: Implication for synthesis of supported catalysts by supercritical water impregnation[J]. Korean J Chem Eng,2018,35(9):1932−1940. doi: 10.1007/s11814-018-0084-y
    [11] OSADA M, SATO O, ARAI K, SHIRAI M. Stability of supported ruthenium catalysts for lignin gasification in supercritical water[J]. Energy Fuels,2006,20(6):2337−2343. doi: 10.1021/ef060356h
    [12] ZÖHRER H, MAYR F, VOGEL F. Stability and performance of ruthenium catalysts based on refractory oxide supports in supercritical water conditions[J]. Energy Fuels,2013,27(8):4739−4747. doi: 10.1021/ef400707f
    [13] RAVENELLE R M, COPELAND J R, KIM W-G, CRITTENDEN J C, SIEVERS C. Structural changes of γ-Al2O3-supported catalysts in hot liquid water[J]. ACS Catal,2011,1(5):552−561. doi: 10.1021/cs1001515
    [14] ELLIOTT D C, SEALOCK L J, BAKER E G. Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification[J]. Ind Eng Chem Res,1993,32(8):1542−1548. doi: 10.1021/ie00020a002
    [15] DE VLIEGER D J M, THAKUR D B, LEFFERTS L, SESHAN K. Carbon nanotubes: A promising catalyst support material for supercritical water gasification of biomass waste[J]. ChemCatChem,2012,4(12):2068−2074. doi: 10.1002/cctc.201200318
    [16] ZHANG L, CHAMPAGNE P, XU C. Screening of supported transition metal catalysts for hydrogen production from glucose via catalytic supercritical water gasification[J]. Int J Hydrog Energy,2011,36(16):9591−9601. doi: 10.1016/j.ijhydene.2011.05.077
    [17] LU Y, ZHU Y, LI S, ZHANG X, GUO L. Behavior of nickel catalysts in supercritical water gasification of glucose: Influence of support[J]. Biomass Bioenergy,2014,67:125−136. doi: 10.1016/j.biombioe.2014.04.038
    [18] 郭烈锦, 王乐, 黄勇, 杜明明, 葛晖, 刘兆峥, 陈渝楠. 农林业固废超临界水热化学制氢进展——反应机理[J]. 西安交通大学学报, 2023, 57(1): 1–14.

    GUO Lie-jin, WANG Le, HUANG Yong, DU Ming-ming, GE Hui, LIU Zhao-zheng, CHEN Yu-nan. Review of thermochemical conversion of agriculture and forestry waste for hydrogen production in supercritical water-mechanism analysis[J]. J Xi'an Jiaotong Univ, 2023, 57(1): 1–14.
    [19] YAKABOYLU O, HARINCK J, GERTON SMIT K G, DE JONG W. Supercritical water gasification of manure: A thermodynamic equilibrium modeling approach[J]. Biomass Bioenergy,2013,59:253−263. doi: 10.1016/j.biombioe.2013.07.011
    [20] RAHBARI A, VENKATARAMAN M B, PYE J. Energy and exergy analysis of concentrated solar supercritical water gasification of algal biomass[J]. Appl Energy,2018,228:1669−1682. doi: 10.1016/j.apenergy.2018.07.002
    [21] WAN W. An innovative system by integrating the gasification unit with the supercritical water unit to produce clean syngas: Effects of operating parameters[J]. Int J Hydrog Energy,2016,41(33):14573−14582. doi: 10.1016/j.ijhydene.2016.04.237
    [22] 闫秋会, 郭烈锦, 张西民, 吕友军, 梁兴. 超临界水中葡萄糖气化制氢的热力学分析[J]. 化工学报,2004,(11):1916−1920. doi: 10.3321/j.issn:0438-1157.2004.11.030

    YAN Qiu-hui, GUO Lie-jin, ZHANG Xi-min, LU You-jun, LIANG Xing. Thermodynamics analysis of hydrogen production by glucose gasification in supercritical water[J]. J Chem Ind Eng,2004,(11):1916−1920. doi: 10.3321/j.issn:0438-1157.2004.11.030
    [23] 吴君章, 晏波, 何凤媚, 谢成, 吴超飞, 韦朝海. 近-超临界水中Ni/ZrO2催化气化聚乙二醇水溶液的产氢特性[J]. 化工学报,2008,(3):743−750.

    WU Jun-zhang, YAN Bo, HE Feng-mei, XIE Cheng, WU Chao-fei, WEI Chao-hai. Characteristics of hydrogen production from polyethylene glycol wastewater by sub-supercritical water gasification with Ni/ZrO2 catalysts[J]. J Chem Ind Eng,2008,(3):743−750.
    [24] NIKOO M K, SAEIDI S, LOHI A. A comparative thermodynamic analysis and experimental studies on hydrogen synthesis by supercritical water gasification of glucose[J]. Clean Technol Environ Policy,2015,17(8):2267−2288. doi: 10.1007/s10098-015-0965-2
    [25] RESENDE F L P, SAVAGE P E. Effect of metals on supercritical water gasification of cellulose and lignin[J]. Ind Eng Chem Res,2010,49(6):2694−2700. doi: 10.1021/ie901928f
    [26] BJELIĆ S, GASSER U, ALXNEIT I, VOGEL F. Deactivation of methanation catalyst (Ru/C) under supercritical water by deposition of non-volatile organics: First insights into deposition patterns and chemical properties[J]. ChemCatChem,2019,11(6):1747−1755. doi: 10.1002/cctc.201801615
    [27] SHABAKER J W, HUBER G W, DUMESIC J A. Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts[J]. J Catal,2004,222(1):180−191. doi: 10.1016/j.jcat.2003.10.022
    [28] HUBER G W, SHABAKER J W, DUMESIC J A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons[J]. Science,2003,300(5628):2075−2077. doi: 10.1126/science.1085597
    [29] GUAN Q Q, MAO T X, ZHANG Q L, MIAO R R, NING P, GU J J, TIAN S L, CHEN Q L, CHAI X S. Catalytic gasification of lignin with Ni/Al2O3-SiO2 in sub/supercritical water[J]. J Supercrit Fluid,2014,95:413−421. doi: 10.1016/j.supflu.2014.10.015
    [30] OSADA M, SATO T, WATANABE M, ADSCHIRI T, ARAI K. Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water[J]. Energy Fuels,2004,18(2):327−333. doi: 10.1021/ef034026y
    [31] KIPCAK E, AKGUN M. Biofuel production from olive mill wastewater through its Ni/Al2O3 and Ru/Al2O3 catalyzed supercritical water gasification[J]. Renewable Energy,2018,124:155−164. doi: 10.1016/j.renene.2017.06.075
    [32] ORTIZ F J G, CAMPANARIO F J, AGUILERA P G, OLLERO P. Supercritical water reforming of glycerol: Performance of Ru and Ni catalysts on Al2O3 support[J]. Energy,2016,96:561−568. doi: 10.1016/j.energy.2015.12.090
    [33] OSADA M, YAMAGUCHI A, HIYOSHI N, SATO O, SHIRAI M. Gasification of sugarcane bagasse over supported ruthenium catalysts in supercritical water[J]. Energy Fuels,2012,26(6):3179−3186. doi: 10.1021/ef300460c
    [34] AZADI P, KHAN S, STROBEL F, AZADI F, FARNOOD R. Hydrogen production from cellulose, lignin, bark and model carbohydrates in supercritical water using nickel and ruthenium catalysts[J]. Appl Catal B: Environ,2012,117:330−338.
    [35] SATO T, OSADA M, WATANABE M, SHIRAI M, ARAI K. Gasification of alkylphenols with supported noble metal catalysts in supercritical water[J]. Ind Eng Chem Res,2003,42(19):4277−4282. doi: 10.1021/ie030261s
    [36] OSADA M, SATO O, WATANABE M, ARAI K, SHIRAI M. Water Density Effect on Lignin Gasification over Supported Noble Metal Catalysts in Supercritical Water[J]. Energy Fuels,2006,20(3):930−935. doi: 10.1021/ef050398q
    [37] 王洪明, 庙荣荣, 杨勇, 乔玉辉, 张琼芳, 李春生, 黄江平. 碱木质素在超临界水中Ru/C纳米管催化气化的降解研究[J]. 燃料化学学报,2015,43(10):1195−1201. doi: 10.3969/j.issn.0253-2409.2015.10.007

    WANG Hong-ming, MIAO Rong-rong, YANG Yong, QIAO Yu-hui, ZHANG Qiong-fang, LI Chun-sheng, HUANG Jiang-ping. Study on the catalytic gasification of alkali lignin over Ru/C nanotubes in supercritical water[J]. J Fuel Chem Technol,2015,43(10):1195−1201. doi: 10.3969/j.issn.0253-2409.2015.10.007
    [38] BYRD A J, PANT K K, GUPTA R B. Hydrogen production from ethanol by reforming in Supercritical water using Ru/Al2O3 catalyst[J]. Energ Fuel,2007,21(6):3541−3547. doi: 10.1021/ef700269z
    [39] BYRD A J, PANT K K, GUPTA R B. Hydrogen production from glycerol by reforming in supercritical water over Ru/Al2O3 catalyst[J]. Fuel,2008,87(13/14):2956−2960.
    [40] VOGEL F, WALDNER M H, ROUFF A A, RABE S. Synthetic natural gas from biomass by catalytic conversion in supercritical water[J]. Green Chem,2007,9(6):616−619. doi: 10.1039/b614601e
    [41] ONWUDILI J A, WILLIAMS P T. Catalytic conversion of bio-oil in supercritical water: Influence of RuO2/gamma-Al2O3 catalysts on gasification efficiencies and bio-methane production[J]. Appl Catal B: Environ,2016,180:559−568. doi: 10.1016/j.apcatb.2015.06.058
    [42] KERSTEN S R A, POTIC B, PRINS W, VAN SWAAIJ W P M. Gasification of model compounds and wood in hot compressed water[J]. Ind Eng Chem Res,2006,45(12):4169−4177. doi: 10.1021/ie0509490
    [43] 姜炜, 程乐明, 张荣, 毕继诚. 连续式超临界水反应器中褐煤制氢过程影响因素的研究[J]. 燃料化学学报,2008,36(6):660−665. doi: 10.3969/j.issn.0253-2409.2008.06.004

    JIANG Wei, CHENG Le-ming, ZHANG Rong, BI Ji-cheng. Continuous hydrogen generation from lignite in supercritical water[J]. J Fuel Chem Technol,2008,36(6):660−665. doi: 10.3969/j.issn.0253-2409.2008.06.004
    [44] 吕友军, 张西民, 冀承猛, 郭烈锦. 玉米芯在超临界水中气化制氢实验研究[J]. 太阳能学报,2006,(4):335−339. doi: 10.3321/j.issn:0254-0096.2006.04.004

    LÜ You-jun, ZHANG Xi-min, JI Cheng-meng, GUO Lie-jin. Experimental investigation on hydrogen production by corn cob gasification in supercritical water[J]. Acta Energ Sol Sin,2006,(4):335−339. doi: 10.3321/j.issn:0254-0096.2006.04.004
    [45] PARK K C, TOMIYASU H. Gasification reaction of organic compounds catalyzed by RuO2 in supercritical water[J]. Chem Commun,2003,(6):694−695. doi: 10.1039/b211800a
    [46] ONWUDILI J A. Supercritical water gasification of RDF and its components over RuO2/γ-Al2O3 catalyst: New insights into RuO2 catalytic reaction mechanisms[J]. Fuel,2016,181:157−169. doi: 10.1016/j.fuel.2016.04.102
    [47] RABE S, NACHTEGAAL M, ULRICH T, VOGEL F. Towards understanding the catalytic reforming of biomass in supercritical water[J]. Angew Chem Int Ed,2010,49(36):6434−6437. doi: 10.1002/anie.201001160
    [48] PETERSON A A, DREHER M, WAMBACH J, NACHTEGAAL M, DAHL S, NØRSKOV J K, VOGEL F. Evidence of scrambling over ruthenium-based catalysts in supercritical-water gasification[J]. ChemCatChem,2012,4(8):1185−1189. doi: 10.1002/cctc.201100450
    [49] DREHER M, JOHNSON B, PETERSON A A, NACHTEGAAL M, WAMBACH J, VOGEL F. Catalysis in supercritical water: Pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules[J]. J Catal,2013,301:38−45. doi: 10.1016/j.jcat.2013.01.018
    [50] 刘理力, 廖传华, 陈海军, 朱跃钊. 松木屑超临界水气化制甲烷产气性能试验[J]. 林业工程学报,2016,1(4):96−101.

    (LIU Li-li, LIAO Chuan-hua, CHEN Hai-jun, ZHU Yue-zhao. Experimental study on the methane production by gasification of pine sawdust in supercritical water[J]. J Forestry Eng,2016,1(4):96−101.
    [51] KIPÇAK E, SÖĞÜT O Ö, AKGÜN M. Hydrothermal gasification of olive mill wastewater as a biomass source in supercritical water[J]. J Supercrit Fluid,2011,57(1):50−57. doi: 10.1016/j.supflu.2011.02.006
    [52] KRUSE A, DINJUS E. Hydrogen from methane and supercritical water[J]. Angew Chem Int Ed,2003,42(8):909−911. doi: 10.1002/anie.200390240
    [53] 王东辉, 程代云, 史喜成, 郝郑平. 环境友好的超临界多相催化反应研究进展[J]. 现代化工,2001,(11):16−20. doi: 10.3321/j.issn:0253-4320.2001.11.004

    WANG Dong-hui, CHENG Dai-yun, SHI Xi-cheng, HAO Zheng-ping. Advances in environment-friendly heterogeneous catalytic reaction in supercritical fluids[J]. Mod Chem Ind,2001,(11):16−20. doi: 10.3321/j.issn:0253-4320.2001.11.004
    [54] OSADA M, HIYOSHI N, SATO O, ARAI K, SHIRAI M. Effect of sulfur on catalytic gasification of lignin in supercritical water[J]. Energy Fuels,2007,21(3):1400−1405. doi: 10.1021/ef060636x
    [55] WALDNER M H, KRUMEICH F, VOGEL F. Synthetic natural gas by hydrothermal gasification of biomass: Selection procedure towards a stable catalyst and its sodium sulfate tolerance[J]. J Supercrit Fluid,2007,43(1):91−105. doi: 10.1016/j.supflu.2007.04.004
    [56] OSADA M, HIYOSHI N, SATO O, ARAI K, SHIRAI M. Reaction pathway for catalytic gasification of lignin in presence of sulfur in supercritical water[J]. Energy Fuels,2007,21(4):1854−1858. doi: 10.1021/ef0701642
    [57] AZADI P, FARNOOD R. Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes[J]. Int J Hydrog Energy,2011,36(16):9529−9541. doi: 10.1016/j.ijhydene.2011.05.081
    [58] WANG Y, ZHU Y, LIU Z, WANG L, XU D, FANG C, WANG S. Catalytic performances of Ni-based catalysts on supercritical water gasification of phenol solution and coal-gasification wastewater[J]. Int J Hydrog Energy,2019,44(7):3470−3480. doi: 10.1016/j.ijhydene.2018.08.218
    [59] LI S, SAVAGE P E, GUO L. Stability and activity maintenance of Al2O3- and carbon nanotube-supported Ni catalysts during continuous gasification of glycerol in supercritical water[J]. J Supercrit Fluid,2018,135:188−197. doi: 10.1016/j.supflu.2017.12.006
    [60] LI S, SAVAGE P E, GUO L. Stability and activity maintenance of sol-gel Ni-MxOy (M=Ti, Zr, Ta) catalysts during continuous gasification of glycerol in supercritical water[J]. J Supercrit Fluid,2019,148:137−147. doi: 10.1016/j.supflu.2019.02.028
    [61] BEHNIA I, YUAN Z, CHARPENTIER P, XU C. Production of methane and hydrogen via supercritical water gasification of renewable glucose at a relatively low temperature: Effects of metal catalysts and supports[J]. Fuel Process Technol,2016,143:27−34. doi: 10.1016/j.fuproc.2015.11.006
    [62] CHAKINALA A G, VAN SWAAIJ W P M, KERSTEN S R A, DE VLIEGER D, SESHAN K, BRILMAN D W F. Catalytic reforming of glycerol in supercritical water over bimetallic Pt-Ni catalyst[J]. Ind Eng Chem Res,2013,52(15):5302−5312.
    [63] SHABAKER J W, SIMONETTI D A, CORTRIGHT R D, DUMESIC J A. Sn-modified Ni catalysts for aqueous-phase reforming: Characterization and deactivation studies[J]. J Catal,2005,231(1):67−76. doi: 10.1016/j.jcat.2005.01.019
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1516
  • HTML全文浏览量:  321
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 修回日期:  2023-02-23
  • 录用日期:  2023-02-27
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回