留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氮气吸附-核磁共振分析的煤气化细渣孔隙结构特征

于伟 刘莉君 高博 王丽娜 岳双凌

于伟, 刘莉君, 高博, 王丽娜, 岳双凌. 基于氮气吸附-核磁共振分析的煤气化细渣孔隙结构特征[J]. 燃料化学学报(中英文), 2022, 50(8): 966-973. doi: 10.19906/j.cnki.JFCT.2022017
引用本文: 于伟, 刘莉君, 高博, 王丽娜, 岳双凌. 基于氮气吸附-核磁共振分析的煤气化细渣孔隙结构特征[J]. 燃料化学学报(中英文), 2022, 50(8): 966-973. doi: 10.19906/j.cnki.JFCT.2022017
YU Wei, LIU Li-jun, GAO Bo, WANG Li-na, YUE Shuang-ling. Pore structure of coal gasification fine slag based on nitrogen adsorption and nuclear magnetic resonance analysis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 966-973. doi: 10.19906/j.cnki.JFCT.2022017
Citation: YU Wei, LIU Li-jun, GAO Bo, WANG Li-na, YUE Shuang-ling. Pore structure of coal gasification fine slag based on nitrogen adsorption and nuclear magnetic resonance analysis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 966-973. doi: 10.19906/j.cnki.JFCT.2022017

基于氮气吸附-核磁共振分析的煤气化细渣孔隙结构特征

doi: 10.19906/j.cnki.JFCT.2022017
基金项目: 国家重点研发计划(2020YFC1910000)和陕西省自然科学基础研究计划项目(2021JLM-15)资助
详细信息
    作者简介:

    于伟(1985- ),男,山东昌邑人,工程师。E-mail:yuweiba@163.com

  • 中图分类号: X752

Pore structure of coal gasification fine slag based on nitrogen adsorption and nuclear magnetic resonance analysis

Funds: The project was supported by National Key Research and Development Program (2020YFC1910000) and Natural Science Basic Research Plan in Shaanxi Province of China (2021JLM-15).
  • 摘要: 本研究以宁夏地区煤气化细渣为研究对象,通过低温氮气吸附-脱附、扫描电镜以及低场核磁共振对不同粒度级产品孔隙结构进行了表征与分析。孔隙形态以裂缝形为主,各粒级产品BET比表面积较大,为125.78−589.78 m2/g,扫描电镜分析表明,BJH孔径与实际相差较大,仅以低温氮气吸附法分析孔隙结构具有一定的局限性。低场核磁共振法表明,各粒度级产品孔径均含有微孔、过渡孔、中孔和大孔,总孔隙度均在27%左右,以中孔、大孔为主,微孔次之,过渡孔较少。该种孔隙结构表明煤气化细渣不同粒度级产品均具有一定的吸附性能,但中大孔为水分的主要储存空间,导致脱水困难。
  • FIG. 1766.  FIG. 1766.

    FIG. 1766.  FIG. 1766.

    图  1  各粒级产品的N2吸附-脱附等温曲线

    Figure  1  Nitrogen adsorption curves of each particle size products

    图  2  吸附回线与孔隙形态的对应关系[18]

    Figure  2  Relationship between hysteresis loop and the pore’s morphology[18]

    图  3  各粒度级产品烧失量及比表面积关系

    Figure  3  Relationship between loss on ignition and specific surface area of products of various particle sizes

    图  4  各粒度级产品氮气吸附孔径分布

    Figure  4  Pore size distribution of nitrogen adsorption of various particle sizes

    图  5  各粒度级产品的SEM分析(×1000倍)

    Figure  5  SEM analysis of products of each particle size (×1000)

    图  6  不同粒度级产品核磁共振分析孔径分布特征

    Figure  6  Pore size distribution characteristics of products with different particle sizes analyzed by NMR

    图  7  不同粒度级产品核磁分析孔隙类型分布

    Figure  7  Pore type distribution of products with different particle sizes by NMR analysis

    表  1  煤气化细渣基本性质分析

    Table  1  Basic properties analysis of coal gasification fine slag

    Mt/%Mad/%Ad/%Vdaf/%FCad/%St,d/%Qgr,d/(cal·g−1)Qnet,ar/(cal·g−1)
    69.216.5150.0410.5637.310.283809790
    下载: 导出CSV

    表  2  煤气化细渣筛分

    Table  2  Particle size distributions of coal gasification fine slag

    Particle size/mmYield/%Ash content/%Cumulative yield/%Cumulative ash content/%
    +0.55.5517.255.5517.25
    0.5−0.2512.2812.3917.8313.90
    0.25−0.12520.2017.3038.0315.71
    0.125−0.0747.8238.2645.8519.55
    0.074−0.0454.8865.9550.7324.02
    −0.04549.2777.60100.0050.42
    Total100.0050.42
    下载: 导出CSV

    表  3  各粒度级产品的孔隙结构参数

    Table  3  Pore structure parameters of products of various particle sizes

    Particle size/mmLoss on ignition/%BET surface area/(m2·g−1)BJH total pore volume/(cm3·g−1)Pore diameter/nm
    +0.582.75125.780.0832.65
    0.5−0.2587.61285.630.2012.82
    0.25−0.12582.70504.260.4963.94
    0.125−0.07461.74589.780.6544.44
    0.074−0.04534.05423.500.4984.70
    −0.04522.40212.150.3915.86
    下载: 导出CSV
  • [1] 刘艳丽, 李强, 陈占飞, 赵江, 赵俞, 孙利鹏. 煤气化渣特性分析、研究进展与展望[J]. 煤炭科学技术, https://kns.cnki.net/kcms/detail/11.2402.TD.20210817.1421.002.html.

    LIU Yan-li, LI Qiang, CHEN Zhan-fei, ZHAO Jiang, ZHAO Yu, SUN Li-peng. Characteristics analysis, research progress and prospect of coal gasification slag[J]. Coal Sci Technol, https://kns.cnki.net/kcms/detail/11.2402.TD.20210817.1421.002.html.
    [2] 吴昊东, 邵丰华, 吕鹏, 白永辉, 宋旭东, 王焦飞, 郭庆华, 王学斌, 于广锁. 气流床煤气化细渣结构、性质与其粒度分布关系研究[J]. 燃料化学学报,2022,50(5):513−522. doi: 10.19906/j.cnki.JFCT.2021089

    WU Hao-dong, SHAO Feng-hua, LÜ Peng, BAI Yong-hui, SONG Xu-dong, WANG Jiao-fei, GUO Qing-hua, WANG Xue-bin, YU Guang-suo. Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification[J]. J Fuel Chem Technol,2022,50(5):513−522. doi: 10.19906/j.cnki.JFCT.2021089
    [3] 宋瑞领, 蓝天. 气流床煤气化炉渣特性及综合利用研究进展[J]. 煤炭科学技术,2021,49(4):227−236.

    SONG Rui-ling, LAN Tian. Review on characteristics and utilization of entrained-flow coal gasification residue[J]. Coal Sci Technol,2021,49(4):227−236.
    [4] LV D, BAI Y, WANG J, SONG X, TANG G. Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification[J]. J Fuel Chem Technol,2021,49(2):129−136. doi: 10.1016/S1872-5813(21)60011-7
    [5] LIU X, JIN Z, JING Y, FAN P, DONG L. Review of the characteristics and graded utilization of coal gasification slag[J]. Chin J Chem Eng,2021,35:92−106. doi: 10.1016/j.cjche.2021.05.007
    [6] 宁永安, 段一航, 高宁博, 全翠. 煤气化渣组分回收与利用技术研究进展[J]. 洁净煤技术,2020,26(S1):14−19.

    NING Yong-an, DUAN Yi-hang, GAO Ning-bo, QUAN Cui. Progress of component recycling and utilization technology of coal gasification slag[J]. Clean Coal Technol,2020,26(S1):14−19.
    [7] 吴海骏. 固体废弃物为原料制备无机多孔材料(膜)及其性能研究[D]. 合肥: 合肥工业大学, 2015.

    WU Hai-jun. The preparation and characterization of inorganic porous material (membrane) from solid waste[D]. Hefei: Hefei University of Technology, 2015.
    [8] 赵永彬, 吴海骏, 张学斌, 刘洪刚, 井云环, 袁伟. 煤气化残渣基多孔陶瓷的制备研究[J]. 洁净煤技术,2020,22(5):7−11.

    ZHAO Yong-bin, WU Hai-jun, ZHANG Xue-bin, LIU Hong-gang, JING Yun-huan, YUAN Wei. Fabrication of porous ceramic from coal gasification residual[J]. Clean Coal Technol,2020,22(5):7−11.
    [9] LIU S, CHEN X, AI W, WEI C. A new method to prepare mesoporous silica from coal gasification fine slag and its application in methylene blue adsorption[J]. J Cleaner Prod,2019,212:1062−1071. doi: 10.1016/j.jclepro.2018.12.060
    [10] ZHANG J, ZUO J, AI W, LIU S, WEI C. Preparation of a new high-efficiency resin deodorant from coal gasification fine slag and its application in the removal of volatile organic compounds in polypropylene composites[J]. J Hazard Mater,2020,384:121347.
    [11] 申艳军, 王旭, 赵春虎, 王生全, 郭晨, 师庆民, 马文. 榆神府矿区富油煤多尺度孔隙结构特征[J]. 煤田地质与勘探,2021,49(3):33−41. doi: 10.3969/j.issn.1001-1986.2021.03.005

    SHEN Yan-jun, WANG Xu, ZHAO Chun-hu, WANG Sheng-quan, GUO Chen, SHI Q ing-min, MA Wen. Experimental study on multi-scale pore structure characteristics of tar-rich coal in Yushenfu mining area[J]. Coal Geol Explor,2021,49(3):33−41. doi: 10.3969/j.issn.1001-1986.2021.03.005
    [12] 杨甫, 贺丹, 马东民, 段中会, 田涛, 付德亮. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏,2020,32(3):14−23. doi: 10.12108/yxyqc.20200302

    YANG Fu, HE Dan, MA Dong-min, DUAN Zhong-hui, TIAN Tao, FU De-liang. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir[J]. Lithol Reservoirs,2020,32(3):14−23. doi: 10.12108/yxyqc.20200302
    [13] LI Y, ZHANG C, TANG D, GAN Q, NIU X, WANG K, SHEN R. Coal pore size distributions controlled by the coalification process: An experimental study of coals from the Junggar, Ordos and Qinshui basins in China[J]. Fuel,2017,206:352−363. doi: 10.1016/j.fuel.2017.06.028
    [14] ZHANG J, WEI C, JU W, YAN G, LU G, HOU X, ZHENG K. Stress sensitivity characterization and heterogeneous variation of the pore-fracture system in middle-high rank coals reservoir based on NMR experiments[J]. Fuel,2019,238:331−344. doi: 10.1016/j.fuel.2018.10.127
    [15] 林海飞, 卜婧婷, 严敏, 白杨. 中低阶煤孔隙结构特征的氮吸附法和压汞法联合分析[J]. 西安科技大学学报,2019,39(1):1−8.

    LIN Hai-fei, BU Jing-ting, YAN Min, BAI Yang. Joint analysis of pore structure characteristics of middle and low rank coal with nitrogen adsorption and mercury intrusion method[J]. J Xi’an Univ Sci Technol,2019,39(1):1−8.
    [16] 杨青, 李剑, 田文广, 孙斌, 祝婕, 杨宇航. 海拉尔盆地褐煤全孔径结构特征及影响因素[J]. 天然气地球科学,2020,31(11):1603−1614.

    YANG Qing, LI Jian, TIAN Wen-guang, SUN Bin, ZHU Jie, YANG Yu-hang. Characteristics on pore structures on full scale of lignite and main controlling factors in Hailar Basin[J]. Nat Gas Geosci,2020,31(11):1603−1614.
    [17] 陈尚斌, 朱炎铭, 王红岩, 刘洪林, 魏伟, 方俊华. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,37(3):438−444.

    CHEN Shang-bin, ZHU Yan-ming, WANG Hong-yan, LIU Hong-lin, WEI Wei, FANG Jun-hua. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. J China Coal Soc,2012,37(3):438−444.
    [18] 赵迪斐, 郭英海, 毛潇潇, 卢晨刚, 李咪, 钱福常. 基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J]. 煤炭学报,2017,42(6):1517−1526.

    ZHAO Di-fei, GUO Ying-hai, MAO Xiao-xiao, LU Chen-gang, LI Mi, QIAN Fu-chang. Characteristics of macro-nanopores in anthracite coal based on mercury injection, nitrogen adsorption and FE-SEM[J]. J China Coal Soc,2017,42(6):1517−1526.
    [19] 单长安, 张廷山, 梁兴, 胡冉冉, 赵卫卫. 富镜质组和富惰质组高阶煤纳米孔隙结构特征[J]. 石油学报,2019,39(1):1−8. doi: 10.7623/syxb201901001

    SHAN Chang-an, ZHANG Ting-shan, LIANG Xing, HU Ran-ran, ZHAO Wei-wei. Nanopore structure characteristics of high-rank vitrinite-and inertinite-coal[J]. Acta Pet Sin,2019,39(1):1−8. doi: 10.7623/syxb201901001
    [20] 娄彤, 张忠孝, 周志豪. 气流床气化炉高熔点煤气化反应模拟[J]. 热能与动力工程,2015,30(3):406−412.

    LOU Tong, ZHANG Zhongxiao, ZHOU Zhihao. Simulation of the high ash melting point coal gasification reaction in a gas flow bed gasifier[J]. J Eng Therm Energy Power,2015,30(3):406−412.
    [21] GB/T 19587—2017, 气体吸附BET法测定固态物质比表面积[S].

    GB/T 19587—2017, Determination of the specific surface area of solids by gas adsorption using the BET method[S].
    [22] 王学斌, 于伟, 张韬, 白永辉, 刘莉君, 史兆臣, 殷瑞, 谭厚章. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术,2021,27(3):61−69.

    WANG Xue-bin, YU Wei, ZHANG Tao, BAI Yong-hui, LIU Li-jun, SHI Zhao-chen, YIN Rui, TAN Hou-zhang. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technol,2021,27(3):61−69.
    [23] 杨明, 柳磊, 张学博, 毛俊睿, 柴沛. 不同阶煤孔隙结构与流体特性的核磁共振试验研究[J]. 中国安全科学学报,2021,31(1):81−88.

    YANG Ming, LIU Lei, ZHANG Xue-bo, MAO Jun-rui, CHAI Pei. Nuclear magnetic resonance experimental study on pore structure and fluid characteristics of coal at different ranks[J]. China Saf Sci J,2021,31(1):81−88.
    [24] 夏文成, 毛玉强. 基于低场核磁共振表征的矿物孔隙润湿规律[J]. 煤炭学报,2021,46(2):602−613.

    XIA Wencheng, MAO Yuqiang. Pore wetting law of minerals by 1H LF-NMR characterization[J]. J China Coal Soc,2021,46(2):602−613.
    [25] LI X, KANG Y, HAGHIGHI M. Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP)[J]. Meas,2018,116:122−128. doi: 10.1016/j.measurement.2017.10.059
    [26] 孟宪明. 煤孔隙结构和煤对气体吸附特性研究[D]. 泰安: 山东科技大学, 2007.

    MENG Xianming. Study on the pore structure of coals and characteristics of gases adsorption on coals[D]. Taian: Shandong University of Science and Technology, 2007.
    [27] GUO F, LIU H, ZHAO X, WU J. Insights on water temporal-spatial migration laws of coal gasification fine slag filter cake during water removal process and its enlightenment for efficient dewatering[J]. Fuel,2021,292:120274.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  263
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 修回日期:  2022-02-21
  • 录用日期:  2022-03-10
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回