留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PbCl2在缺陷Zigzag未燃尽碳的吸附机理

花桥建 吴国兴 徐卫 周晓韡 李冬 董瑞信

花桥建, 吴国兴, 徐卫, 周晓韡, 李冬, 董瑞信. PbCl2在缺陷Zigzag未燃尽碳的吸附机理[J]. 燃料化学学报.
引用本文: 花桥建, 吴国兴, 徐卫, 周晓韡, 李冬, 董瑞信. PbCl2在缺陷Zigzag未燃尽碳的吸附机理[J]. 燃料化学学报.
HUA Qiaojian, WU Guoxing, XU Wei, ZHOU Xiaowei, LI Dong, DONG Ruixin. Adsorption Mechanism of PbCl2 on Defect Zigzag Unburned Carbon[J]. Journal of Fuel Chemistry and Technology.
Citation: HUA Qiaojian, WU Guoxing, XU Wei, ZHOU Xiaowei, LI Dong, DONG Ruixin. Adsorption Mechanism of PbCl2 on Defect Zigzag Unburned Carbon[J]. Journal of Fuel Chemistry and Technology.

PbCl2在缺陷Zigzag未燃尽碳的吸附机理

基金项目: 锅炉吹灰优化项目(标准编码:F646100001,项目编码:10049876BC190037)资助。
详细信息
    作者简介:

    花桥建(1979.10.09),男,本科,工程师,研究方向:火力发电厂安全生产,E-mail:1109589@chnenergy.com.cn

    通讯作者:

    董瑞信(1965.12.10),男,本科,高级工程师,研究方向:火力发电厂安全生产,E-mail:957715624@qq.com,电话:18653156596

  • 中图分类号: TK16

Adsorption Mechanism of PbCl2 on Defect Zigzag Unburned Carbon

Funds: The project was supported by the Boiler ash blowing optimization project (Standard Code: F646100001, Project Code: 10049876BC190037).
  • 摘要: 燃煤电厂排放的PbCl2毒性极强,且在全球的迁移和积累而受到广泛关注。未燃尽碳被认为是有效去除PbCl2的一种有前景的吸附剂。然而,现有的未燃尽碳模型不能反映实际未燃尽碳表面上的碳缺陷的结构。因此,建立缺陷未燃尽碳模型具有重要的现实意义。此外,碳模型对PbCl2的吸附研究还不够深入,反应机理也不清楚。这极大地阻碍了高效吸附剂的发展。为了揭示PbCl2在缺陷未燃尽碳表面上的吸附机理,利用密度泛函理论(DFT)系统地研究了PbCl2在不同缺陷未燃尽碳表面上的吸附过程,并分析了PbCl2在缺陷未燃烧碳表面上的吸附机理。结果表明:缺陷吸附位点是PbCl2吸附的最佳位点。这项工作将为燃煤电厂碳基吸附剂的开发和脱除PbCl2提供理论指导。
  • 图  1  Zigzag型缺陷未燃尽碳模型

    Figure  1  Zigzag type defect unburned carbon model

    图  2  (a) Zigzag型缺陷未燃尽碳模型ELF图, (b)Zigzag型缺陷未燃尽碳模型电子密度变形图

    Figure  2  (a) ELF diagram of Zigzag type defective unburned carbon model, (b) Electron density deformation diagram of Zigzag type defective unburned carbon model

    图  3  (a) PbCl2在未燃尽碳模型表面的吸附构型 (b) PbCl2在未燃尽碳模型上的吸附能

    Figure  3  (a) Adsorption configuration of PbCl2 on the surface of unburned carbon model (b) Adsorption Energy of PbCl2 on Unburned Carbon Model

    图  4  Mayer键级与吸附能之间的相关性分析图

    Figure  4  Correlation analysis diagram between Mayer bond level and adsorption energy

    图  5  (a) Zig-D1-1-PbCl2构型ELF图, (b) Zig-D1-1-PbCl2构型电子密度差分图

    Figure  5  (a) Zig-D1-1-PbCl2 conformation ELF diagram, (b) Zig-D1-1-PbCl2 conformation electron density difference diagram

    表  1  Zigzag缺陷模型结构的表面优化参数及基态能量

    Table  1  Surface optimization parameters and ground state energy of Zigzag defect model structure

    ZigzagZig-D1-1Zig-D1-2Zig-D2-1Zig-D2-2Zig-D2-3Zig-D3-1Zig-D3-2
    C-C(Å)1.411.411.41.411.431.441.441.39
    C-H(Å)1.091.091.091.091.091.091.091.09
    ∠C-C-C(deg)120.31120.31121.09120.47121.65123.85120.71121.88
    ∠C-C-H(deg)119.29119.29119.46120.91120.63120.8119.55119.45
    Energy (a.u.)−921.05−920.25−920.15−881.13−881.01−881.9−845.88−845.85
    下载: 导出CSV

    表  2  PbCl2在Zigzag缺陷未燃尽碳表面吸附构型的MBO值

    Table  2  The MBO value of the adsorption configuration of PbCl2 on the surface of unburned carbon with Zigzag defects

    StructureBonding TypeBonding length (Å)MBO
    Zigzag-PbCl2 C6-Pb35 2.46 0.64
    C9-Pb35 2.47 0.55
    C11-Cl35 1.73 1.27
    Zig-D1-1-PbCl2 C9-Pb34 2.35 0.74
    C14-Cl36 1.77 0.97
    Zig-D1-2-PbCl2 C9-Cl36 1.78 1.04
    C11-Pb34 2.36 0.68
    Zig-D2-1-PbCl2 C8-Pb33 2.36 0.69
    C10-Cl35 1.78 0.97
    Zig-D2-2-PbCl2 C11-Pb1 2.34 0.7
    C16-Cl3 1.77 0.97
    Zig-D2-3-PbCl2 C6-Pb33 2.33 0.81
    C13-C34 1.76 0.97
    Zig-D3-1-PbCl2 C9-Pb32 2.43 0.45
    Zig-D3-2-PbCl2 C12-Pb32 2.4 0.5
    下载: 导出CSV
  • [1] BUNT J, WAANDERS F. Trace element behaviour in the Sasol–Lurgi MK IV FBDB gasifier. Part 1–the volatile elements: Hg, As, Se, Cd and Pb[J]. Fuel,2008,87(12):2374−87. doi: 10.1016/j.fuel.2008.01.017
    [2] XU M. Status of trace element emission in a coal combustion process: a review[J]. Fuel Process Technol,2004,85(2-3):215−37. doi: 10.1016/S0378-3820(03)00174-7
    [3] YANG W, GAO Z, LIU X, Ding X, Yan W. The adsorption characteristics of As2O3, Pb0, PbO and PbCl2 on single atom iron adsorbent with graphene-based substrates[J]. Chem Eng J,2019,361:304−13. doi: 10.1016/j.cej.2018.12.087
    [4] 肖龙恒, 唐续龙, 卢光华, 张颖, 郭敏, 张梅. 重毒性铅污染土壤清洁高效修复研究进展[J]. 工程科学学报,2022,44(2):289−304.

    Xiao Long-heng, Tang Xu-long, Lu Guang-hua, Zhang Ying, Guo Min, Zhang Mei. Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil[J]. Gongcheng Kexue Xuebao/Chinese Journal of Engineering,2022,44(2):289−304.
    [5] 丁宁. 煤炭中造成大气污染有害元素的分析[J]. 中国标准化,2018,(18):2.

    Ding Ning. Analysis of harmful elements in coal causing atmospheric pollution[J]. China Standardization,2018,(18):2.
    [6] 邓双, 张凡, 刘宇, 石应杰, 王红梅, 张辰, 王相凤, 曹晴. 燃煤电厂铅的迁移转化研究[J]. 中国环境科学,2013,33(7):1199−206.

    Deng Shuang, Zhang Fan, Liu Yu, Shi Ying-jie, Wang Hong-mei, Zhang Chen, Wang Xiang-feng, Cao Qing. Migration transformation of lead from coal-fired power plants[J]. China Environ. Sci.,2013,33(7):1199−206.
    [7] AL-ZBOON K, AL-HARAHSHEH M S, HANI F B. Fly ash-based geopolymer for Pb removal from aqueous solution[J]. J Hazard Mater,2011,188(1-3):414−21. doi: 10.1016/j.jhazmat.2011.01.133
    [8] MOHAN S, GANDHIMATHI R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent[J]. J Hazard Mater,2009,169(1-3):351−9. doi: 10.1016/j.jhazmat.2009.03.104
    [9] GUPTA G, TORRES N. Use of fly ash in reducing toxicity of and heavy metals in wastewater effluent[J]. J Hazard Mater,1998,57(1-3):243−8. doi: 10.1016/S0304-3894(97)00093-9
    [10] CHO H, OH D, KIM K. A study on removal characteristics of heavy metals from aqueous solution by fly ash[J]. J Hazard Mater,2005,127(1-3):187−95. doi: 10.1016/j.jhazmat.2005.07.019
    [11] AHMARUZZAMAN M. Role of fly ash in the removal of organic pollutants from wastewater[J]. Energy Fuels,2009,23(3):1494−511. doi: 10.1021/ef8002697
    [12] LAOHAPRAPANON S, MARQUES M, HOGLAND W. Removal of Organic Pollutants from Wastewater Using Wood Fly Ash as a Low‐Cost Sorbent[J]. Clean:Soil, Air, Water,2010,38(11):1055−61. doi: 10.1002/clen.201000105
    [13] SHEN F, LIU J, WU D, Dong Y, Liu F, Huang H. Design of O2/SO2 dual-doped porous carbon as superior sorbent for elemental mercury removal from flue gas[J]. J Hazard Mater,2019,366:321−8. doi: 10.1016/j.jhazmat.2018.12.007
    [14] 高正阳, 刘晓硕, 李昂, 马传志, 李祥, 杨建蒙. 电厂烟气中SO2对活性炭吸附单质铅(Pb0)的影响机理[J]. 环境科学学报,2019,39(11):3732−9.

    Gao Zheng-yang, Liu Xiao-shuo, Li Ang, Ma Chuan-zhi, Li Xiang, Yang Jian-meng. Mechanism of SO2 effect on adsorption of singlet lead (Pb0) by activated carbon in power plant flue gas[J]. J Environ Sci,2019,39(11):3732−9.
    [15] ENOKI T, KOBAYASHI Y, FUKUI K-I. Electronic structures of graphene edges and nanographene[J]. Int Rev Phys Chem,2007,26(4):609−45. doi: 10.1080/01442350701611991
    [16] CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry[J]. Carbon,1998,36(7-8):1061−70. doi: 10.1016/S0008-6223(98)00078-5
    [17] 高正阳, 杨维结. 卤素改性活性炭氧化单质汞的机理研究[J]. 工程热物理学报,2017,38(2):381−5.

    Gao Zhen-yang, Yang Wei-jie. Mechanistic study on the oxidation of singlet mercury by halogen-modified activated carbon[J]. J Eng Thermophys-Rus,2017,38(2):381−5.
    [18] CHEN P, GU M, CHEN G, LIU F, LIN Y. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char[J]. Fuel,2019,254.
    [19] GAO Z, LI M, SUN Y, YANG W. Effects of oxygen functional complexes on arsenic adsorption over carbonaceous surface[J]. J Hazard Mater,2018,360:436−44. doi: 10.1016/j.jhazmat.2018.08.029
    [20] 余岳溪, 刘晓硕, 李昂, 廖永进, 兰万里. 氯改性活性炭吸附单质铅(Pb0)的机理[J]. 中国环境科学,2019,39(5):7.

    Yu, Yue-xi, Liu, Xiao-shuo, Li, Ang, Liao Yong-jin, Lan Wan-li. Mechanism of adsorption of singlet lead (Pb0) by chlorine-modified activated carbon[J]. China Environ Sci,2019,39(5):7.
    [21] HONG D, LIU L, WANG C, SI T, GUO X. Construction of a coal char model and its combustion and gasification characteristics: Molecular dynamic simulations based on ReaxFF[J]. Fuel,2021,300.
    [22] NEESE F. The ORCA program system[J]. Wires Comput Mol Sci,2012,2(1):73−8. doi: 10.1002/wcms.81
    [23] RéMY S, PRUDENT P, HISSLER C, PROBST J L, KREMPP G. Total mercury concentrations in an industrialized catchment, the Thur River basin (north-eastern France): geochemical background level and contamination factors[J]. Chemosphere,2003,52(3):635−44. doi: 10.1016/S0045-6535(03)00245-5
    [24] 李明晖. 飞灰中未燃尽碳及氧化钙表面吸附砷的机理研究[D]. 华北电力大学, 2019.

    Li Minghui. Mechanistic study of arsenic adsorption on the surface of unburned carbon and calcium oxide in fly ash[D]. North China Electric Power University, 2019.
    [25] MA D, ZENG Z, LIU L, HUANG X, JIA Y. Computational Evaluation of Electrocatalytic Nitrogen Reduction on TM Single-, Double-, and Triple-Atom Catalysts (TM = Mn, Fe, Co, Ni) Based on Graphdiyne Monolayers[J]. J Phys Chem C,2019,123(31):19066−76. doi: 10.1021/acs.jpcc.9b05250
    [26] LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. J Comput Chem,2012,33(5):580−92. doi: 10.1002/jcc.22885
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  43
  • HTML全文浏览量:  38
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 录用日期:  2022-03-28
  • 网络出版日期:  2022-04-15

目录

    /

    返回文章
    返回