Adsorption Mechanism of PbCl2 on Defect Zigzag Unburned Carbon
-
摘要: 燃煤电厂排放的PbCl2毒性极强,且在全球的迁移和积累而受到广泛关注。未燃尽碳被认为是有效去除PbCl2的一种有前景的吸附剂。然而,现有的未燃尽碳模型不能反映实际未燃尽碳表面上的碳缺陷的结构。因此,建立缺陷未燃尽碳模型具有重要的现实意义。此外,碳模型对PbCl2的吸附研究还不够深入,反应机理也不清楚。这极大地阻碍了高效吸附剂的发展。为了揭示PbCl2在缺陷未燃尽碳表面上的吸附机理,利用密度泛函理论(DFT)系统地研究了PbCl2在不同缺陷未燃尽碳表面上的吸附过程,并分析了PbCl2在缺陷未燃烧碳表面上的吸附机理。结果表明:缺陷吸附位点是PbCl2吸附的最佳位点。这项工作将为燃煤电厂碳基吸附剂的开发和脱除PbCl2提供理论指导。Abstract: PbCl2 emitted from coal-fired power plants is of great concern due to its extreme toxicity and global migration and accumulation. Unburned carbon is considered as a promising adsorbent for effective PbCl2 removal. However, existing models of unburned carbon do not reflect the structure of carbon defects on the surface of actual unburned carbon. Therefore, it is of great practical importance to develop a defective unburned carbon model. In addition, the carbon model is not deep enough for the adsorption of PbCl2, and the reaction mechanism is not clear. This greatly hinders the development of efficient adsorbents. In order to reveal the adsorption mechanism of PbCl2 on the surface of defective unburned carbon, the adsorption process of PbCl2 on different defective unburned carbon surfaces was systematically investigated by using density functional theory (DFT). The results show that the defective adsorption sites are the best sites for PbCl2 adsorption. This work will provide theoretical guidance for the development of carbon-based adsorbents for coal-fired power plants and the removal of PbCl2.
-
Key words:
- Quantum Chemistry /
- Unburned Carbon /
- Adsorption /
- Lead
-
表 1 Zigzag缺陷模型结构的表面优化参数及基态能量
Table 1 Surface optimization parameters and ground state energy of Zigzag defect model structure
Zigzag Zig-D1-1 Zig-D1-2 Zig-D2-1 Zig-D2-2 Zig-D2-3 Zig-D3-1 Zig-D3-2 C-C(Å) 1.41 1.41 1.4 1.41 1.43 1.44 1.44 1.39 C-H(Å) 1.09 1.09 1.09 1.09 1.09 1.09 1.09 1.09 ∠C-C-C(deg) 120.31 120.31 121.09 120.47 121.65 123.85 120.71 121.88 ∠C-C-H(deg) 119.29 119.29 119.46 120.91 120.63 120.8 119.55 119.45 Energy (a.u.) −921.05 −920.25 −920.15 −881.13 −881.01 −881.9 −845.88 −845.85 表 2 PbCl2在Zigzag缺陷未燃尽碳表面吸附构型的MBO值
Table 2 The MBO value of the adsorption configuration of PbCl2 on the surface of unburned carbon with Zigzag defects
Structure Bonding Type Bonding length (Å) MBO Zigzag-PbCl2 C6-Pb35 2.46 0.64 C9-Pb35 2.47 0.55 C11-Cl35 1.73 1.27 Zig-D1-1-PbCl2 C9-Pb34 2.35 0.74 C14-Cl36 1.77 0.97 Zig-D1-2-PbCl2 C9-Cl36 1.78 1.04 C11-Pb34 2.36 0.68 Zig-D2-1-PbCl2 C8-Pb33 2.36 0.69 C10-Cl35 1.78 0.97 Zig-D2-2-PbCl2 C11-Pb1 2.34 0.7 C16-Cl3 1.77 0.97 Zig-D2-3-PbCl2 C6-Pb33 2.33 0.81 C13-C34 1.76 0.97 Zig-D3-1-PbCl2 C9-Pb32 2.43 0.45 Zig-D3-2-PbCl2 C12-Pb32 2.4 0.5 -
[1] BUNT J, WAANDERS F. Trace element behaviour in the Sasol–Lurgi MK IV FBDB gasifier. Part 1–the volatile elements: Hg, As, Se, Cd and Pb[J]. Fuel,2008,87(12):2374−87. doi: 10.1016/j.fuel.2008.01.017 [2] XU M. Status of trace element emission in a coal combustion process: a review[J]. Fuel Process Technol,2004,85(2-3):215−37. doi: 10.1016/S0378-3820(03)00174-7 [3] YANG W, GAO Z, LIU X, Ding X, Yan W. The adsorption characteristics of As2O3, Pb0, PbO and PbCl2 on single atom iron adsorbent with graphene-based substrates[J]. Chem Eng J,2019,361:304−13. doi: 10.1016/j.cej.2018.12.087 [4] 肖龙恒, 唐续龙, 卢光华, 张颖, 郭敏, 张梅. 重毒性铅污染土壤清洁高效修复研究进展[J]. 工程科学学报,2022,44(2):289−304.Xiao Long-heng, Tang Xu-long, Lu Guang-hua, Zhang Ying, Guo Min, Zhang Mei. Research progress in cleaning and efficient remediation of heavy, toxic, lead-contaminated soil[J]. Gongcheng Kexue Xuebao/Chinese Journal of Engineering,2022,44(2):289−304. [5] 丁宁. 煤炭中造成大气污染有害元素的分析[J]. 中国标准化,2018,(18):2.Ding Ning. Analysis of harmful elements in coal causing atmospheric pollution[J]. China Standardization,2018,(18):2. [6] 邓双, 张凡, 刘宇, 石应杰, 王红梅, 张辰, 王相凤, 曹晴. 燃煤电厂铅的迁移转化研究[J]. 中国环境科学,2013,33(7):1199−206.Deng Shuang, Zhang Fan, Liu Yu, Shi Ying-jie, Wang Hong-mei, Zhang Chen, Wang Xiang-feng, Cao Qing. Migration transformation of lead from coal-fired power plants[J]. China Environ. Sci.,2013,33(7):1199−206. [7] AL-ZBOON K, AL-HARAHSHEH M S, HANI F B. Fly ash-based geopolymer for Pb removal from aqueous solution[J]. J Hazard Mater,2011,188(1-3):414−21. doi: 10.1016/j.jhazmat.2011.01.133 [8] MOHAN S, GANDHIMATHI R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent[J]. J Hazard Mater,2009,169(1-3):351−9. doi: 10.1016/j.jhazmat.2009.03.104 [9] GUPTA G, TORRES N. Use of fly ash in reducing toxicity of and heavy metals in wastewater effluent[J]. J Hazard Mater,1998,57(1-3):243−8. doi: 10.1016/S0304-3894(97)00093-9 [10] CHO H, OH D, KIM K. A study on removal characteristics of heavy metals from aqueous solution by fly ash[J]. J Hazard Mater,2005,127(1-3):187−95. doi: 10.1016/j.jhazmat.2005.07.019 [11] AHMARUZZAMAN M. Role of fly ash in the removal of organic pollutants from wastewater[J]. Energy Fuels,2009,23(3):1494−511. doi: 10.1021/ef8002697 [12] LAOHAPRAPANON S, MARQUES M, HOGLAND W. Removal of Organic Pollutants from Wastewater Using Wood Fly Ash as a Low‐Cost Sorbent[J]. Clean:Soil, Air, Water,2010,38(11):1055−61. doi: 10.1002/clen.201000105 [13] SHEN F, LIU J, WU D, Dong Y, Liu F, Huang H. Design of O2/SO2 dual-doped porous carbon as superior sorbent for elemental mercury removal from flue gas[J]. J Hazard Mater,2019,366:321−8. doi: 10.1016/j.jhazmat.2018.12.007 [14] 高正阳, 刘晓硕, 李昂, 马传志, 李祥, 杨建蒙. 电厂烟气中SO2对活性炭吸附单质铅(Pb0)的影响机理[J]. 环境科学学报,2019,39(11):3732−9.Gao Zheng-yang, Liu Xiao-shuo, Li Ang, Ma Chuan-zhi, Li Xiang, Yang Jian-meng. Mechanism of SO2 effect on adsorption of singlet lead (Pb0) by activated carbon in power plant flue gas[J]. J Environ Sci,2019,39(11):3732−9. [15] ENOKI T, KOBAYASHI Y, FUKUI K-I. Electronic structures of graphene edges and nanographene[J]. Int Rev Phys Chem,2007,26(4):609−45. doi: 10.1080/01442350701611991 [16] CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry[J]. Carbon,1998,36(7-8):1061−70. doi: 10.1016/S0008-6223(98)00078-5 [17] 高正阳, 杨维结. 卤素改性活性炭氧化单质汞的机理研究[J]. 工程热物理学报,2017,38(2):381−5.Gao Zhen-yang, Yang Wei-jie. Mechanistic study on the oxidation of singlet mercury by halogen-modified activated carbon[J]. J Eng Thermophys-Rus,2017,38(2):381−5. [18] CHEN P, GU M, CHEN G, LIU F, LIN Y. DFT study on the reaction mechanism of N2O reduction with CO catalyzed by char[J]. Fuel,2019,254. [19] GAO Z, LI M, SUN Y, YANG W. Effects of oxygen functional complexes on arsenic adsorption over carbonaceous surface[J]. J Hazard Mater,2018,360:436−44. doi: 10.1016/j.jhazmat.2018.08.029 [20] 余岳溪, 刘晓硕, 李昂, 廖永进, 兰万里. 氯改性活性炭吸附单质铅(Pb0)的机理[J]. 中国环境科学,2019,39(5):7.Yu, Yue-xi, Liu, Xiao-shuo, Li, Ang, Liao Yong-jin, Lan Wan-li. Mechanism of adsorption of singlet lead (Pb0) by chlorine-modified activated carbon[J]. China Environ Sci,2019,39(5):7. [21] HONG D, LIU L, WANG C, SI T, GUO X. Construction of a coal char model and its combustion and gasification characteristics: Molecular dynamic simulations based on ReaxFF[J]. Fuel,2021,300. [22] NEESE F. The ORCA program system[J]. Wires Comput Mol Sci,2012,2(1):73−8. doi: 10.1002/wcms.81 [23] RéMY S, PRUDENT P, HISSLER C, PROBST J L, KREMPP G. Total mercury concentrations in an industrialized catchment, the Thur River basin (north-eastern France): geochemical background level and contamination factors[J]. Chemosphere,2003,52(3):635−44. doi: 10.1016/S0045-6535(03)00245-5 [24] 李明晖. 飞灰中未燃尽碳及氧化钙表面吸附砷的机理研究[D]. 华北电力大学, 2019.Li Minghui. Mechanistic study of arsenic adsorption on the surface of unburned carbon and calcium oxide in fly ash[D]. North China Electric Power University, 2019. [25] MA D, ZENG Z, LIU L, HUANG X, JIA Y. Computational Evaluation of Electrocatalytic Nitrogen Reduction on TM Single-, Double-, and Triple-Atom Catalysts (TM = Mn, Fe, Co, Ni) Based on Graphdiyne Monolayers[J]. J Phys Chem C,2019,123(31):19066−76. doi: 10.1021/acs.jpcc.9b05250 [26] LU T, CHEN F. Multiwfn: a multifunctional wavefunction analyzer[J]. J Comput Chem,2012,33(5):580−92. doi: 10.1002/jcc.22885 -