留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体加压烘焙对玉米秸秆提质及热解特性的影响

高攀 赵泽衡 刘禹彤 郭得忠 杨少霞

高攀, 赵泽衡, 刘禹彤, 郭得忠, 杨少霞. 气体加压烘焙对玉米秸秆提质及热解特性的影响[J]. 燃料化学学报(中英文), 2022, 50(6): 735-746. doi: 10.1016/S1872-5813(21)60190-1
引用本文: 高攀, 赵泽衡, 刘禹彤, 郭得忠, 杨少霞. 气体加压烘焙对玉米秸秆提质及热解特性的影响[J]. 燃料化学学报(中英文), 2022, 50(6): 735-746. doi: 10.1016/S1872-5813(21)60190-1
GAO Pan, ZHAO Ze-heng, LIU Yu-tong, GUO De-zhong, YANG Shao-xia. Effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 735-746. doi: 10.1016/S1872-5813(21)60190-1
Citation: GAO Pan, ZHAO Ze-heng, LIU Yu-tong, GUO De-zhong, YANG Shao-xia. Effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 735-746. doi: 10.1016/S1872-5813(21)60190-1

气体加压烘焙对玉米秸秆提质及热解特性的影响

doi: 10.1016/S1872-5813(21)60190-1
基金项目: 国家自然科学基金(51776070, 51206045)和中央高校基金(2018MS033)资助
详细信息
    通讯作者:

    E-mail:gaopan@ncepu.edu.cn

  • 中图分类号: TK6

Effect of gas-pressurized torrefaction on the upgrading and pyrolysis characteristics of corn stalk

Funds: The project was supported by the National Natural Science Foundation of China (51776070, 51206045) and the Fundamental Research Funds for Central Universities (2018MS033)
  • 摘要: 在不同温度及压力下对玉米秸秆进行了烘焙,通过元素分析、FT-IR、TGA以及固定床热解等方式分析了烘焙产物的理化特性与热解特性,研究了气体加压烘焙对生物质燃料特性及热转化行为的影响,结果表明,烘焙样品的脱氧效率及能量密度均随烘焙温度的升高而增加;在相同质量收率时,加压烘焙所需温度比常压烘焙低约40 ℃,且能量收率、碳收率、脱氧效率以及烘焙产物的能量密度分别为常压烘焙的1.125、1.142、1.539和1.131倍;加压烘焙样品比常压烘焙表现出更好的疏水性,且更易于脱水;当烘焙温度为250 ℃时,加压烘焙样品热解气相产物中CH4和H2含量分别为常压烘焙的2.135和1.439倍;加压烘焙样品热解液相产物中酚类相对含量增加,最高可达51.11%,而呋喃类和酸类物质含量则明显下降。相较于常压烘焙,加压烘焙在相同温度下对生物质具有更好的提质效果。
  • FIG. 1594.  FIG. 1594.

    FIG. 1594.  FIG. 1594.

    图  1  不同烘焙条件下的质量收率与能量收率(a)、氧脱除效率(b)以及碳收率(c)

    Figure  1  Mass yield and energy yield (a), oxygen removal efficiency (b) and carbon yield (c) of various torrefied corn stalk samples under different conditions

    图  2  原生及烘焙玉米秸秆的 Van Krevelen 图

    Figure  2  Van Krevelen diagram of raw and torrefied corn stalks

    图  3  不同压力下加压烘焙的质量收率与能量收率(a)、氧脱除效率(b)以及碳收率(c)

    Figure  3  Mass yield and energy yield (a), oxygen removal efficiency (b) and carbon yield (c) for the torrefaction of corn stalks under different pressures at 250 ℃

    图  4  原生及烘焙玉米秸秆的吸水特性(a)与脱水特性(b)曲线

    Figure  4  Water absorption (a) and desorption (b) curves of the raw and torrefied corn stalk samples

    图  5  原生(a)及烘焙(b)玉米秸秆的FT-IR光谱谱图

    Figure  5  FT-IR spectra of the raw (a) and torrefied (b) corn stalk samples under different torrefaction conditions

    图  6  原生(a)及烘焙(b)玉米秸秆的TG和DTG曲线

    Figure  6  TG and DTG curves of the raw (a) and torrefied (b) corn stalk samples

    图  7  常压烘焙(a)和加压烘焙(b)玉米秸秆的热解动力学补偿效应

    Figure  7  Kinetic compensation effect for the pyrolysis of the torrefied biomass samples obtained from AP torrefaction (a) and GP torrefaction (b)

    图  8  加压烘焙强化提质原理示意图

    Figure  8  Schematic diagram of gas pressured torrefaction for biomass upgrading

    图  9  常压烘焙(a)及加压烘焙(b)玉米秸秆热解三相产物产率

    Figure  9  Pyrolysis product distribution of AP (a) and GP (b) torrefied corn straw

    图  10  常压烘焙(a)及加压烘焙(b)玉米秸秆热解气相产物组分分布

    Figure  10  Gas product distribution of AP- (a) and GP-torrefied (b) corn straw samples

    图  11  原生及烘焙玉米秸秆热解液相产物组分分布

    Figure  11  Liquid product distribution of raw and torrefied corn stalk

    表  1  玉米秸秆灰分的XRF成分分析

    Table  1  XRF analysis of corn stalk ash

    SampleContent w/%
    SiO2K2OCaO2MgOP2O5Al2O3Fe2O3Na2O
    Corn stalk44.0117.979.487.135.923.132.470.59
    下载: 导出CSV

    表  2  原生及烘焙玉米秸秆的基本性质

    Table  2  Basic properties of raw and torrefied biomass samples

    SampleProximate analysis w/%(dry base) Elemental analysis w/%(dry base)QHHV/(MJ·kg−1)
    VFCACHO*N
    Raw72.6719.637.7043.705.3440.432.8317.65
    180-AP72.4219.847.7444.735.2140.232.0917.91
    210-AP71.0921.127.7944.955.1440.122.0017.97
    230-AP68.0622.639.3145.255.1838.222.0418.09
    250-AP66.5622.3011.1445.424.8936.292.2618.15
    180-GP-565.4026.08.6050.124.9734.361.9519.82
    210-GP-555.5131.2213.2752.144.7627.692.1420.53
    230-GP-553.8231.5814.6055.004.7923.492.1221.67
    250-GP-548.9635.7915.2557.374.8019.972.6222.71
    250-GP-148.4936.3815.1357.024.8020.362.6922.58
    250-GP-348.9236.0215.0657.484.8120.022.6322.77
    250-GP-748.5335.8815.5958.204.7918.792.6323.06
    O*:calculated by difference
    下载: 导出CSV

    表  3  不同温度5 MPa加压烘焙需要的初始压力与加压能耗

    Table  3  Initial pressure and energy consumption for 5 MPa GP torrefaction at different temperatures

    Torrefaction temperature/℃Initial pressure/MPaEnergy consumption/MJ
    1803.292.87
    2103.092.65
    2302.962.51
    2502.852.39
    下载: 导出CSV

    表  4  原生及烘焙样品的热解特性参数

    Table  4  Pyrolysis parameters of the raw and torrefied corn stalk samples

    Sampleti/℃tp/℃Rmax/(%·min−1)Rv/(%·min−1)wf/%Δt1/2/℃Di/10−7
    Raw199.00320.405.880.9212.06252.673.65
    180-AP231.00325.965.520.9319.75250.002.93
    210-AP247.71327.286.520.9220.65268.552.99
    230-AP260.99326.696.740.9022.68286.562.76
    250-AP287.49326.452.740.6141.73299.330.98
    180-GP235.64316.114.380.9320.04272.832.15
    210-GP240.74320.463.810.7732.88285.451.73
    230-GP237.19319.872.560.6940.05283.151.19
    250-GP267.92432.991.320.5547.16288.870.40
    下载: 导出CSV

    表  5  原生及烘焙样品的动力学参数

    Table  5  Kinetic parameters for the pyrolysis of raw and torrefied corn straw samples.

    SampleTemperature range/℃E/(kJ·mol−1)A/min−1R²
    Raw220−35037.991.14×1040.9989
    180-AP220−35055.435.09×1050.9849
    210-AP220−35070.971.32×1070.9900
    230-AP220−35081.479.89×1070.9970
    250-AP220−35068.441.15×1070.9929
    180-GP220−35049.077.61×1040.9974
    210-GP220−35049.737.79×1040.9985
    230-GP220−35041.179.38×1030.9984
    250-GP220−45034.118.05×1020.9851
    下载: 导出CSV
  • [1] ZENG K, HE X, YANG H P, WANG X H, CHEN H P. The effect of combined pretreatments on the pyrolysis of corn stalk[J]. Bioresour Technol,2019,281:309−317. doi: 10.1016/j.biortech.2019.02.107
    [2] DAI L L, WANG Y P, LIU Y H, RUAN R, HE C, YU Z T, JIANG L, ZENG Z H, TIAN X J. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review[J]. Renewable Sustainable Energy Rev,2019,107:20−36. doi: 10.1016/j.rser.2019.02.015
    [3] CHEN Z W, WANG M F, JIANG E C, WANG D H, ZHANG K, REN Y Z, JIANG Y. Pyrolysis of Torrefied Biomass[J]. Trends Biotechnol,2018,36(12):1287−1298. doi: 10.1016/j.tibtech.2018.07.005
    [4] CHEN W H, PENG J H, BI X T T. A state-of-the-art review of biomass torrefaction, densification and applications[J]. Renewable Sustainable Energy Rev,2015,44:847−866. doi: 10.1016/j.rser.2014.12.039
    [5] HE Q, DING L, GONG Y, LI W F, WEI J T, YU G S. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis[J]. Bioresour Technol,2019,280:104−111. doi: 10.1016/j.biortech.2019.01.138
    [6] YUE Y, SINGH H, SINGH B, MANI S. Torrefaction of sorghum biomass to improve fuel properties[J]. Bioresour Technol,2017,232:372−379. doi: 10.1016/j.biortech.2017.02.060
    [7] LI S X, CHEN C Z, LI M F, XIAO X. Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres[J]. Bioresour Technol,2018,249:348−353. doi: 10.1016/j.biortech.2017.10.026
    [8] WANG Z L, LIM C J, GRACE J R, LI H, PARISE M R. Effects of temperature and particle size on biomass torrefaction in a slot-rectangular spouted bed reactor[J]. Bioresour Technol,2017,244(Pt 1):281−288.
    [9] LI S X, ZOU J Y, LI M F, WU X F, BIAN J, XUE Z M. Structural and thermal properties of Populus tomentosa during carbon dioxide torrefaction[J]. Energy,2017,124:321−329. doi: 10.1016/j.energy.2017.02.079
    [10] XIN S Z, HUANG F, LIU X Y, MI T, XU Q L. Torrefaction of herbal medicine wastes: Characterization of the physicochemical properties and combustion behaviors[J]. Bioresour Technol,2019,287:121408. doi: 10.1016/j.biortech.2019.121408
    [11] XIN S Z, MI T, LIU X Y, HUANG F. Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residues[J]. Energy,2018,152:586−593. doi: 10.1016/j.energy.2018.03.104
    [12] MENG J J, MOORE A, TILOTTA D C, KELLEY S S, ADHIKARI S, PARKT S. Thermal and storage stability of bio-oil from pyrolysis of Torrefied wood[J]. Energy Fuels,2015,29(8):5117−5126. doi: 10.1021/acs.energyfuels.5b00929
    [13] CHEN D Y, ZHENG Z C, FU K X, ZENG Z, WANG J J, LU M T. Torrefaction of biomass stalk and its effect on the yield and quality of pyrolysis products[J]. Fuel,2015,159:27−32. doi: 10.1016/j.fuel.2015.06.078
    [14] ONSREE T, TIPPAYAWONG N, WILLIAMS T, MCCULLOUGH K, BARROW E, POGAKU R, LAUTERBACH J. Torrefaction of pelletized corn residues with wet flue gas[J]. Bioresour Technol,2019,285:121330. doi: 10.1016/j.biortech.2019.121330
    [15] BERRUECO C, RECARI J, GÜELL B M, DEL ALAMO G. Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed[J]. Energy,2014,70:68−78. doi: 10.1016/j.energy.2014.03.087
    [16] CHEN Y J, ZHANG L, ZHANG Y T, LI A M. Pressurized pyrolysis of sewage sludge: Process performance and products characterization[J]. J Anal Appl Pyrolysis,2019,139:205−212. doi: 10.1016/j.jaap.2019.02.007
    [17] MANYÀ J J, AZUARA M, MANSO J A. Biochar production through slow pyrolysis of different biomass materials: Seeking the best operating conditions[J]. Biomass Bioenergy,2018,117:115−123. doi: 10.1016/j.biombioe.2018.07.019
    [18] WANNAPEERA J, WORASUWANNARAK N. Upgrading of woody biomass by torrefaction under pressure[J]. J Anal Appl Pyrolysis,2012,96:173−180. doi: 10.1016/j.jaap.2012.04.002
    [19] TONG S, XIAO L, LI X, ZHU X Q, LIU H, LUO G Q, WORASUWANNARAK N, KERDSUWAN S, FUNGTAMMASAN B, YAO H. A gas-pressurized torrefaction method for biomass wastes[J]. Energy Convers Manage,2018,173:29−36. doi: 10.1016/j.enconman.2018.07.051
    [20] SUN Y M, TONG S, LI X, WANG F, HU Z Z, DACRES O D, EDREIS E M A, WORASUWANNARAK N, SUN M Y, LIU H. Gas-pressurized torrefaction of biomass wastes: The optimization of pressurization condition and the pyrolysis of torrefied biomass[J]. Bioresour Technol,2021,319:124216. doi: 10.1016/j.biortech.2020.124216
    [21] AGAR D, DEMARTINI N, HUPA M. Influence of Elevated Pressure on the Torrefaction of Wood[J]. Energy Fuels,2016,30(3):2127−2136. doi: 10.1021/acs.energyfuels.5b01352
    [22] NHUCHHEN D R, BASU P. Experimental Investigation of Mildly Pressurized Torrefaction in Air and Nitrogen[J]. Energy Fuels,2014,28(5):3110−3121. doi: 10.1021/ef4022202
    [23] ZHANG Y, SONG K Y. Thermal and chemical characteristics of torrefied biomass derived from a generated volatile atmosphere[J]. Energy,2018,165:235−245.
    [24] ITOH T, IWABUCHI K, MAEMOKU N, SASAKI I, TANIGURO K. A new torrefaction system employing spontaneous self-heating of livestock manure under elevated pressure[J]. Waste Manag,2019,85:66−72. doi: 10.1016/j.wasman.2018.12.018
    [25] MEDIC D, DARR M, SHAH A, RAHN S. Effect of torrefaction on water vapor adsorption properties and resistance to microbial degradation of corn stover[J]. Energy Fuels,2012,26(4):2386−2393. doi: 10.1021/ef3000449
    [26] CHENG X X, HUANG Z, WANG Z Q, MA C Y, CHEN S Y. A novel on-site wheat straw pretreatment method: Enclosed torrefaction[J]. Bioresour Technol,2019,281:48−55. doi: 10.1016/j.biortech.2019.02.075
    [27] YAN W, PEREZ S, SHENG K C. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: Dry torrefaction and hydrothermal carbonization[J]. Fuel,2017,196:473−480. doi: 10.1016/j.fuel.2017.02.015
    [28] UEMURA Y, SAADON S, OSMAN N, MANSOR N, TANOUE K. Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide[J]. Fuel,2015,144:171−179. doi: 10.1016/j.fuel.2014.12.050
    [29] SUN Y M, TONG S, LI X, HU Z Z, SUN M Y, GUO L LIU H, HU H Y, LUO G Q, YAO H. Gas-pressurized torrefaction of biomass wastes: Self-promoted deoxygenation of rice straw at low temperature[J]. Fuel,2022,308:122029. doi: 10.1016/j.fuel.2021.122029
    [30] YANG H P, LIU M, CHEN Y Q, XIN S Z, ZHANG X, WAMG X H, CHEN H P. Vapor–solid interaction among cellulose, hemicellulose and lignin[J]. Fuel,2020,263:116681. doi: 10.1016/j.fuel.2019.116681
    [31] WANNAPEERA J, WORASUWANNARAK N. Examinations of chemical properties and pyrolysis behaviors of torrefied woody biomass prepared at the same torrefaction mass yields[J]. J Anal Appl Pyrolysis,2015,115:279−287. doi: 10.1016/j.jaap.2015.08.007
    [32] MA Z Q, WANG J H, YANG Y Y, ZHANG Y, ZHAO C, YU Y M, WANG S R. Comparison of the thermal degradation behaviors and kinetics of palm oil waste under nitrogen and air atmosphere in TGA-FTIR with a complementary use of model-free and model-fitting approaches[J]. J Anal Appl Pyrolysis,2018,134:12−24. doi: 10.1016/j.jaap.2018.04.002
    [33] WIGLEY T, YIP A C K, PANG S S. The use of demineralisation and torrefaction to improve the properties of biomass intended as a feedstock for fast pyrolysis[J]. J Anal Appl Pyrolysis,2015,113:296−306. doi: 10.1016/j.jaap.2015.02.007
    [34] HAN Z, ZENG X, YAO C, XU G. Oxygen migration in torrefaction of eupatorium adenophorum spreng. and its improvement on fuel properties[J]. Energy Fuels,2015,29(11):7275−7283. doi: 10.1021/acs.energyfuels.5b01318
    [35] CHEN D Y, GAO A J, CEN K H, ZHANG J, CAO X B, MA Z Q. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin[J]. Energy Convers Manage,2018,169:228−237. doi: 10.1016/j.enconman.2018.05.063
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  121
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2021-12-06
  • 录用日期:  2021-12-29
  • 网络出版日期:  2022-01-11
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回