留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于煤加氢气化半焦制备Ni/碳基复合吸波材料及组成优化

梁丽萍 高旭洲 高飞 毛璐涛 朱保顺 力国民

梁丽萍, 高旭洲, 高飞, 毛璐涛, 朱保顺, 力国民. 基于煤加氢气化半焦制备Ni/碳基复合吸波材料及组成优化[J]. 燃料化学学报(中英文), 2022, 50(7): 896-903. doi: 10.19906/j.cnki.JFCT.2022001
引用本文: 梁丽萍, 高旭洲, 高飞, 毛璐涛, 朱保顺, 力国民. 基于煤加氢气化半焦制备Ni/碳基复合吸波材料及组成优化[J]. 燃料化学学报(中英文), 2022, 50(7): 896-903. doi: 10.19906/j.cnki.JFCT.2022001
LIANG Li-ping, GAO Xu-zhou, GAO Fei, MAO Lu-tao, ZHU Bao-shun, LI Guo-min. Preparation and composition optimization of the composite Ni/carbon-based microwave absorbents from coal hydrogasification semicoke[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 896-903. doi: 10.19906/j.cnki.JFCT.2022001
Citation: LIANG Li-ping, GAO Xu-zhou, GAO Fei, MAO Lu-tao, ZHU Bao-shun, LI Guo-min. Preparation and composition optimization of the composite Ni/carbon-based microwave absorbents from coal hydrogasification semicoke[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 896-903. doi: 10.19906/j.cnki.JFCT.2022001

基于煤加氢气化半焦制备Ni/碳基复合吸波材料及组成优化

doi: 10.19906/j.cnki.JFCT.2022001
基金项目: 国家自然科学基金(51802212)和山西省自然科学基金(201801D221119)资助
详细信息
    通讯作者:

    E-mail: liangliping@tyust.edu.cn

    ligm@tyust.edu.cn

  • 中图分类号: TB34

Preparation and composition optimization of the composite Ni/carbon-based microwave absorbents from coal hydrogasification semicoke

Funds: The project was supported by the National Natural Science Foundation of China (51802212) and the Natural Science Foundation of Shanxi Province (201801D221119).
  • 摘要: 利用煤加氢气化半焦作载体、其中的炭作还原剂与介电组分,采用硝酸镍溶液浸渍结合碳热还原工艺制备Ni/碳基复合微波吸收材料;研究磁性组分Ni负载量对复合物微观结构与性能的影响作用及相关机制。结果表明,通过改变复合物的碳含量、碳的石墨化程度以及引入界面与缺陷,调整Ni的负载量可以方便地调控复合物的电磁参数,从而实现良好的阻抗匹配。在碳热还原温度为700 ℃时,Ni负载量为20%的复合物显示了最优的微波吸收性能。在涂层厚度为2.5 mm条件下,其最低反射损耗可达−42.6 dB,相应的有效带宽为4.1 GHz;而在2 mm涂层厚度条件下,其有效带宽可达5.6 GHz。复合物中起主导作用的微波吸收机制是介电损耗,主要源于石墨化炭引起的漏导损耗及界面与缺陷引起的极化驰豫损耗。
  • FIG. 1688.  FIG. 1688.

    FIG. 1688.  FIG. 1688.

    图  1  不同碳热还原温度下制备样品的XRD谱图

    Figure  1  XRD patterns of the samples prepared at various carbothermal reduction temperatures

    图  2  不同Ni负载量样品的XRD谱图(a)与拉曼散射光谱谱图(b)

    Figure  2  XRD patterns (a) and Raman spectra (b) of the samples with different Ni loadings

    图  3  样品的SEM照片

    Figure  3  SEM images of the samples

    (a): NiSC-700-0; (b): NiSC-700-10; (c): NiSC-700-20; (d): NiSC-700-30

    图  4  典型样品NiSC-700-20的元素分布

    Figure  4  Elemental mappings of of the typical sample NiSC-700-20

    图  5  样品的反射损耗曲线与阻抗匹配特性(Z = |Zin/Z0|)曲线

    Figure  5  Reflection loss curves and impedance-matching characteristic (Z = |Zin/Z0|) curves of the samples

    (a): NiSC-700-0; (b): NiSC-700-10; (c): NiSC-700-20; (d): NiSC-700-30

    图  6  样品的衰减常数曲线

    Figure  6  Curves of the attenuation constant α of samples

    图  7  样品的复介电常数、复磁导率与损耗因子曲线

    Figure  7  Curves of permittivity (a) and (b), permeability (c) and loss tangents (d) of the samples

    图  8  样品的Cole-Cole半圆

    Figure  8  Cole-Cole semicircles of the typical samples

    表  1  文献报道的Ni/碳基复合材料的微波吸收性能

    Table  1  Microwave absorbing properties of the Ni/carbon-based composites in recent literatures

    AbsorberRLmin/dB EAB/GHzCoating thickness/mmRefs
    laminated porous Ni@C
    nanocomposites
    −59.84.51.5[28]
    Ni/carbon nanocomposites−21.24.41.75[29]
    C/Ni/PPy−42.15.22.4[30]
    NiFe2O4 hollow particle/graphene−40.92.83.5[31]
    NiSC-700-20−42.65.62.0this work
    下载: 导出CSV
  • [1] MA J R, WANG X X, CAO W Q, HAN C, YANG H J, YUAN J, CAO M S. A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures[J]. Chem Eng J,2018,339:487−498. doi: 10.1016/j.cej.2018.01.152
    [2] 刘顺华, 刘国民, 董星龙. 电磁屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2007: 7.

    LIU Sun-hua, LIU Guo-min, DONG Xing-long. Eltromagnetic Shielding and Absorbing Materials[M]. Beijing: Chemical Industry Press, 2007: 7.
    [3] 刘敏, 向军, 吴志鹏, 李佳乐, 沈湘黔. Fe-Co-Ni合金纳米粒子镶嵌的碳纳米纤维的简单制备及其吸波性能[J]. 无机化学学报,2017,33(1):57−65.

    LIU Min, XIANG Jun, WU Zhi-peng, LI Jia-le, SHEN Xiang-qian. Simple preparation of Fe-Co-Ni alloy nanoparticle-encrusted carbon nanofibers and their wave absorption properties[J]. Chin J Inorg Chem,2017,33(1):57−65.
    [4] 胡正浪, 吴海华, 杨增辉, 姜建堂, 周建新. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J/OL]. 复合材料学报, 2021-10-25: 1–14.

    HU Zheng-lang, WU Hai-hua, YANG Zheng-hui, JIANG Jian-tang, ZHOU Jian-xin. Preparation and microwave absorbing properties of grapheme-iron-nickel alloy-poly(lactic acid) composites[J/OL]. Acta Mater Compos Sin, 2021-10-25: 1–14.
    [5] XU J L, QI X S, LUO C Z, QIAO J, XIE R, SUN Y, ZHONG W, FU Q, PAN C X. Synthesis and enhanced microwave absorption properties: a strongly hydrogenated TiO2 nanomaterial[J]. Nano Technol,2017,28(42):425701. doi: 10.1088/1361-6528/aa81ba
    [6] CHEN Y, ZHANG H B, YANG Y B, WANG M, CAO A Y, YU Z Z. High‐performance epoxy nanocomposites reinforced with three‐dimensional carbon nanotube sponge for electromagnetic interference shielding[J]. Adv Funct Mater,2016,26(3):447−455. doi: 10.1002/adfm.201503782
    [7] 罗发, 周万城, 焦桓, 赵东林. 高温吸波材料研究现状[J]. 宇航材料工艺,2002,32(1):8−11. doi: 10.3969/j.issn.1007-2330.2002.01.002

    LUO Fa, ZHOU Wan-cheng, JIAO Huan, ZHAO Dong-lin. Current study of high temoerature rader absorpting materials[J]. Aerospace Mater & Tech,2002,32(1):8−11. doi: 10.3969/j.issn.1007-2330.2002.01.002
    [8] 刘克, 王际童, 龙东辉, 凌立成. 低密度Fe3O4/中孔炭微球复合材料的可规模制备及吸波性能[J]. 无机材料学报,2017,32(10):1023−1028.

    LIU Ke, WANG Ji-tong, LONG Dong-hui, LING Li-cheng. Scalable preparation and wave absorption properties of low-density Fe3O4/mesoporous carbon microsphere composites[J]. Chin J Inorg Chem,2017,32(10):1023−1028.
    [9] 王生浩, 文峰, 郝万军, 曹阳. 电磁污染及电磁辐射防护材料[J]. 环境科学与技术,2006,12:96−98+121. doi: 10.3969/j.issn.1003-6504.2006.09.039

    WANG Seng-hao, WEN Feng, HAO Wang-jun, CAO Yang. Electromagnetism pollution and protection materials for electromagnetic Radiation[J]. Environ Sci Technol,2006,12:96−98+121. doi: 10.3969/j.issn.1003-6504.2006.09.039
    [10] 袁申富. 煤加氢气化制备可替代天然气的研究进展[J]. 当代化工研究,2020,(3):5−14. doi: 10.3969/j.issn.1672-8114.2020.03.002

    YUAN Shen-fu. Research and development of production of substituted natural gas by hydrogasification[J]. Mod Chem Res,2020,(3):5−14. doi: 10.3969/j.issn.1672-8114.2020.03.002
    [11] 严帅, 夏梓洪, 陈彩霞, 曲旋, 毕继诚. 煤催化加氢气化研究进展[J]. 洁净煤技术,2021,27(1):60−72.

    YAN Shuai, XIA Zi-hong, CHEN Cai-xia, QU Xuan, BI Ji-cheng. Research progress on the technology of coal catalytic hydrogasification[J]. Clean Coal Technol,2021,27(1):60−72.
    [12] LUO N, LI X J, WANG X H, YAN H H, ZHANG C J, WANG H T. Synthesis and characterization of carbon-encapsulated iron/iron carbide nanoparticles by a detonation method[J]. Carbon,2010,48(13):3858−3863. doi: 10.1016/j.carbon.2010.06.051
    [13] ŌYA ASAO, ŌTANI SUGIO. Catalytic graphitization of carbons by various metals[J]. Carbon,1979,17(2):131−137. doi: 10.1016/0008-6223(79)90020-4
    [14] FERRARI A C, ROBERTSON J, Interpretation of Raman spectra of disordered and amorphous carbon [J]. Phys Rev B, 2000, 61: 14095.
    [15] ZUO X Q, ZHAO Y P, ZHANG H, HUANG H, ZHOU C, CONG T Z, MUHAMMAD J, YANG X, ZHANG Y F, FAN Z, PAN L J. Surface modification of helical carbon nanocoil (CNC) with N-doped and Co-anchored carbon layer for efficient microwave absorption[J]. J Colloid Interf Sci,2022,608:1894−1906. doi: 10.1016/j.jcis.2021.10.065
    [16] LI W X, LIU Y Y, GUO F, DU Y E, CHEN Y Q. Self-assembly sandwich-like Fe, Co, or Ni nanoparticles/reduced graphene oxide composites with excellent microwave absorption performance[J]. Appl Surf Sci,2021,562:150212. doi: 10.1016/j.apsusc.2021.150212
    [17] 袁欢, 周丹凤, 熊远禄, 王传彬, 沈强. 电磁屏蔽碳系纳米粒子/聚合物基泡沫复合材料的研究进展[J]. 材料科学与工程学报,2021,39(3):510−514.

    YUAN Huan, ZHOU Dan-feng, XIONG Yuan-lu, WANG Chuan-bin, SHEN Qiang. Research progress of electromagnetic shielding carbon nano particles/polymer based foam composites[J]. J Mater Sci Eng,2021,39(3):510−514.
    [18] MECHENRY M E, LAUGHLIN D E. Nano-scale materials development for future magnetic applications[J]. Acta Mater,2000,48(1):223−238. doi: 10.1016/S1359-6454(99)00296-7
    [19] WU L, MENDOZA-GARCIA A, LI Q, SUN S H. Organic phase syntheses of magnetic nanoparticles and their applications[J]. Chem Rev,2016,116(18):10473−10512. doi: 10.1021/acs.chemrev.5b00687
    [20] YANG L J, LV H L, LI M, ZHANG Y, LIU J C, YANG Z H. Multiple polarization effect of shell evolution on hierarchical hollow C@MnO2 composites and their wideband electromagnetic wave absorption properties[J]. Chem Eng J,2020,392:123666. doi: 10.1016/j.cej.2019.123666
    [21] RASHEED ATIF, FAWAD INAM. The dissimilarities between grapheme and frame-like structures[J]. Graphene,2016,5(2):55−72. doi: 10.4236/graphene.2016.52007
    [22] SUN S L, HE Q, XIAO S Y, XU Q, LI X, ZHOU L. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nat Mater,2012,11(5):426−431. doi: 10.1038/nmat3292
    [23] AYALA P, ARENAL R, LOISEAU A, RUBIO A, PICHLER T. The physical and chemical properties of heteronanotubes[J]. Rev Mod Phys,2010,82:1843−1885. doi: 10.1103/RevModPhys.82.1843
    [24] 马志军, 莽昌烨, 翁兴媛, 赵海涛, 高静. Zn还原氧化石墨烯(RGO)和ZnO/RGO自组装复合材料的电磁响应行为[J]. 复合材料学报,2019,36(7):1776−1786.

    MA Zhi-jun, MAH Chang-ye, WENG Xing-yuan, ZHAO Hai-tao, GAO Jing. Electromagnetic response behavior of reduced graphene oxide (RGO) and ZnO/RGO self-assembled composites[J]. Acta Mater Compos Sin,2019,36(7):1776−1786.
    [25] 郭晓琴. 磁性纳米粒子负载石墨烯的结构调控及吸波机理研究[D]. 郑州: 郑州大学, 2016.

    GUO Xiao-qin. Structure regulation and microwave absorption mechanism of grapheme loaded magnetic nanoparticles[D]. Zhengzhou: Zhengzhou University, 2016.
    [26] QUAN B, LIANG X H, JI G B, CHENG Y, LIU W, MA J N, ZHANG Y A, LI D R, XU G Y. Dielectric polarization in electromagnetic wave absorption: Review and perspective[J]. J Alloy Compd,2017,728:1065−1075. doi: 10.1016/j.jallcom.2017.09.082
    [27] JIANG X Y, WAN W H, WANG B, ZHANG L B, YIN L J, VAN B H, X J L, ZHANG L, LU H P, DENG L J. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals[J]. Appl Surf Sci,2022,572:151320. doi: 10.1016/j.apsusc.2021.151320
    [28] ZHEN X, ZHANG X, SHI Y Y, CAI L, CHENG J, JIANG H J, ZHU X J, DONG Y Y, LU W. Efficient microwave absorption of MOFs derived laminated porous Ni@C nanocomposites with waterproof and infrared shielding versatility[J]. Carbon,2021,185:477−490. doi: 10.1016/j.carbon.2021.09.047
    [29] XIE P T, LI H Y, HE B, DANG F, LIN J, FAN R H, HOU C X, LIU L, ZHANG J X, MA Y, GUO Z H. Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption[J]. J Mater Chem C,2018,6(32):8812−8822. doi: 10.1039/C8TC02127A
    [30] WANG Q Y, WU X F, HUANG J, CHEN S Y, ZHANG Y, DONG C J, CHEN G, WANG L H, GUAN H T. Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects[J]. J Alloy Compd,2022,890:161887. doi: 10.1016/j.jallcom.2021.161887
    [31] YAN F, GUO D, ZHANG S, LI C Y, ZHU C L, ZHANG X T, CHEN Y J. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property[J]. Nanoscale,2018,10:2697−2703. doi: 10.1039/C7NR08305J
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  406
  • HTML全文浏览量:  171
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2021-12-26
  • 录用日期:  2021-12-31
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回