留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Catalytic Hydrothermal Liquefaction of Lignin to Produce Aromatics over Perovskite Catalysts

LOU Jing LIAO Wei-ting WANG Zhi-yu LI Yan LI Lu XIE Xin-an

娄静, 廖玮婷, 王智玉, 李雁, 李璐, 解新安. 钙钛矿催化木质素水热液化的研究[J]. 燃料化学学报.
引用本文: 娄静, 廖玮婷, 王智玉, 李雁, 李璐, 解新安. 钙钛矿催化木质素水热液化的研究[J]. 燃料化学学报.
LOU Jing, LIAO Wei-ting, WANG Zhi-yu, LI Yan, LI Lu, XIE Xin-an. Catalytic Hydrothermal Liquefaction of Lignin to Produce Aromatics over Perovskite Catalysts[J]. Journal of Fuel Chemistry and Technology.
Citation: LOU Jing, LIAO Wei-ting, WANG Zhi-yu, LI Yan, LI Lu, XIE Xin-an. Catalytic Hydrothermal Liquefaction of Lignin to Produce Aromatics over Perovskite Catalysts[J]. Journal of Fuel Chemistry and Technology.

钙钛矿催化木质素水热液化的研究

详细信息
  • 中图分类号: TK6

Catalytic Hydrothermal Liquefaction of Lignin to Produce Aromatics over Perovskite Catalysts

Funds: National Natural Science Foundation of China (21576107)
More Information
    Corresponding author: Xie Xin-an, professor, mainly engaged in biomass conversion. xinanxie@scau.edu.cn
  • 摘要: 为探究钙钛矿(LaBO3--LaCoO3、LaFeO3、LaNiO3)催化液化木质素的性能,以碱木质素为原料,将GC−MS、FT−IR、元素分析等实验表征手段与DFT计算相结合,考察了时间、温度、催化剂用量和B位阳离子对转化率、生物油收率及生物油化合物分布的影响。结果表明:三种钙钛矿都能促进木质素的裂解生成芳香族化合物。其中,LaCoO3对生物油产率有最大的促进作用,并在其添加量为5wt%、反应温度180 °C、时间60 min时生物油产率达到最大值67.20wt%,其次为LaNiO3和LaFeO3。且LaCoO3催化下单芳香族化合物的相对含量最高达89.59%。机理研究表明:LaBO3晶体表面的氧原子通过与木质素中的氧原子的吸附降低了木质素分子内键的解离能,其中LaCoO3的吸附能最大,并具有疏松多孔的形貌和适中的氧化还原能力,能够有效促进木质素分子内的C−C和CAr−OCH3的断裂,实现大分子解聚和脱甲氧基反应,生成苯酚等高附加值化合物。
  • Figure  1  Characterization of three perovskites catalysts

    (a: FT-IR, b: XRD, c: SEM)

    Figure  2  Effect of catalyst dosage on HTL of lignin and component distribution of bio-oil over LaCoO3

    (Reaction condition: 2.000g AL+150ml methanol, temperature: 180 °C, time: 60min)

    Figure  3  Effect of reaction temperature on HTL of lignin and component distribution of bio-oil over LaBO3

    (a: LaCoO3 b: LaFeO3 c: LaNiO3 Reaction condition: 2.000 g AL + 150ml methanol, time: 60 min, Catalyst dose: 5.0wt%)

    Figure  4  Effect of reaction time on HTL of lignin and component distribution of bio-oil over LaCoO3

    (Reaction condition: 2.000g AL+150ml methanol, temperature: 180 °C, Catalyst dose: 5.0wt%)

    Figure  5  FT-IR spectra analysis of raw lignin and residue produced over non-catalytic and catalytic HTL

    (Reaction condition: 2.000 g AL + 150 ml methanol, time: 60 min, Catalyst dose: 5.0wt%)

    Figure  6  Adsorption energy and views of adsorption model over LaBO3

    a: Calculated energies for molecular adsorption. b: Views of the adsorption model (C: black, H: white, O: red, La: blue, Co: purple, Fe: yellow, Ni: green)

    Figure  7  Views of adsorption model and molecular structure before and after adsorption of GGE over LaCoO3

    a: Views of the adsorption model. b: Molecular structure before and after adsorption of GGE (C: black, H: white, O: red, La: blue, Co: purple)

    Table  1  Elemental analysis of raw lignin and residue produced under non-catalytic and catalytic (LaCoO3, LaFeO3, LaNiO3) HTL (Reaction condition: 2.000 g AL + 150 ml methanol, time: 60 min, temperature: 180 °C, Catalyst dose: 5.0wt%)

    SampleC,%H,%N,%O,%
    Lignin40.724.130.5153.07
    Non-catalyst38.293.950.5054.26
    LaCoO332.255.280.6257.62
    LaFeO333.435.570.5956.63
    LaNiO332.185.240.6756.59
    下载: 导出CSV

    Table  2  Major oxygen-contained bond length of guaiacol over LaBO3

    CatalystOxygen-contained bond typeBio-oil yield under optimal conditions(wt%)
    CAr–OCH3CArO–CH3
    Bond Lengthaa1.3871.43343.73
    LaCoO3Bond Lengthbb1.3891.43167.20
    c0.002−0.002
    LaFeO3Bond Lengthbb1.3931.43456.69
    c0.0060.001
    LaNiO3Bond Lengthbb1.3901.43259.74
    c0.003−0.001
    a: Bond length in molecular alone.
    b: Bond lengths of molecular adsorbed by different perovskite catalysts
    c: Difference between the bond length in molecular alone and in adsorbed molecular.
    下载: 导出CSV
  • [1] WANG S, LI Z, YI W, FU P, ZHANG A, BAI X. Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour[J]. Renew Energ,2021,163:1673−1681. doi: 10.1016/j.renene.2020.10.108
    [2] KUMAR A, BISWAS B, BHASKAR T. Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin[J]. Bioresour Technol.,2020,299:122589. doi: 10.1016/j.biortech.2019.122589
    [3] WANG Z, LI H, XIE W, HU B, LI K, LU Q. Progress on basic structure, pyrolysis mechanism and characteristics of lignin[J]. Adv New Renew Energ,2020,8(01):6−14.
    [4] ERDOCIA X, PRADO R, FERNANDEZ-RODRIGUEZ J, LABIDI J. Depolymerization of Different Organosolv Lignins in Supercritical Methanol, Ethanol, and Acetone To Produce Phenolic Monomers[J]. Acs Sustain Chem Eng,2016,4(3):1373−1380. doi: 10.1021/acssuschemeng.5b01377
    [5] WU Z, ZHAO X, ZHANG J, LI X, ZHANG Y, WANG F. Ethanol/1, 4-dioxane/formic acid as synergistic solvents for the conversion of lignin into high-value added phenolic monomers[J]. Bioresour Technol,2019,278:187−194. doi: 10.1016/j.biortech.2019.01.082
    [6] LI W, DOU X, ZHU C, WANG J, CHANG H, JAMEEL H, LI X. Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst[J]. Bioresour Technol,2018,269:346−354. doi: 10.1016/j.biortech.2018.08.125
    [7] HAN T, DING S, YANG W, JÖNSSON P. Catalytic pyrolysis of lignin using low-cost materials with different acidities and textural properties as catalysts[J]. Chem Eng J,2019,373:846−856. doi: 10.1016/j.cej.2019.05.125
    [8] KURNIA I, KARNJANAKOM S, BAYU A, YOSHIDA A, RIZKIANA J, PRAKOSO T, ABUDULA A, GUAN G. In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites[J]. Fuel Process Technol,2017,167:730−737. doi: 10.1016/j.fuproc.2017.08.026
    [9] KONG L, ZHANG L, GU J, GOU L, XIE L, WANG Y, DAI L. Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst[J]. Bioresour Technol,2020,299:122582. doi: 10.1016/j.biortech.2019.122582
    [10] NARON D R, COLLARD F X, TYHODA L, GÖRGENS J F. Influence of impregnated catalyst on the phenols production from pyrolysis of hardwood, softwood, and herbaceous lignins[J]. Ind Crop Prod,2019,131:348−356. doi: 10.1016/j.indcrop.2019.02.001
    [11] HU Y, TAO B, SHANG F, ZHOU M, HAO D, FAN R, XIA D, YANG Y, PANG A, LIN K. Thermal decomposition of ammonium perchlorate over perovskite catalysts: Catalytic decomposition behavior, mechanism and application[J]. Appl Surf Sci,2020,513:145849. doi: 10.1016/j.apsusc.2020.145849
    [12] ZHAO X, WANG Y, LIU L, LI B. Preparation and Electrochemical Performance of a Novel Perovskite Anode La0.9Ca0.1Fe0.9Nb0.1O3-δ for Solid Oxide Fuel Cells[J]. J Inorg Mater,2017,32(11):1188−1194. doi: 10.15541/jim20170016
    [13] ZHOU Z, ZHANG M, ZHANG J, SONG F, ZHANG Q, TAN Y, HAN Y. Methane reforming with carbon dioxide over the perovskite supported Ni catalysts[J]. J Fuel Chem Technol,2020,48(07):833−841.
    [14] DONG X, LI J, YAN B, CHEN G. Research progress of perovskite catalyst in thermochemical utilization of biomass[J]. J Chem Ind Eng,2021,1−23.
    [15] CHEN Y, AN H, HAN H, WANG H, WANG X, ZHAO H, SONG H. Research progress on catalytic oxidation of lignin[J]. New Chem Mater,2018,46(11):245−248.
    [16] ZHAO S, WANG L, WANG Y, LI X. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO[J]. J Phys Chem Solids,2018,116:43−49. doi: 10.1016/j.jpcs.2017.12.057
    [17] ZHAO K, HE F, HUANG Z, WEI G, ZHENG A, LI H, ZHAO Z. Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Appl Energ,2016,168:193−203. doi: 10.1016/j.apenergy.2016.01.052
    [18] LI X, LI M, MA X, MIAO J, RAN R, ZHOU W, WANG S, SHAO Z. Nonstoichiometric perovskite for enhanced catalytic oxidation through excess A-site cation[J]. Chem Eng Sci,2020,219:115596. doi: 10.1016/j.ces.2020.115596
    [19] DENG H, LIN L, LIU S. Catalysis of Cu-Doped Co-Based Perovskite-Type Oxide in Wet Oxidation of Lignin To Produce Aromatic Aldehydes[J]. Energ Fuel,2010,24(9):4797−4802. doi: 10.1021/ef100768e
    [20] WANG H, HAN H, SUN E, HAN Y, ZHANG Y, LI J, CHEN Y, SONG H, ZHAO H, KANG Y. Production of Aryl Oxygen-Containing Compounds by the Pyrolysis of Bagasse Alkali Lignin Catalyzed by LaM0.2Fe0.8O3 (M = Fe, Cu, Al, Ti)[J]. Energ Fuel,2019,33(9):8596−8605. doi: 10.1021/acs.energyfuels.9b00755
    [21] LIU C, CHEN D, CAO Y, ZHANG T, MAO Y, WANG W, WANG Z, KAWI S. Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas[J]. Renew Energ,2020,161:408−418. doi: 10.1016/j.renene.2020.07.089
    [22] ZHENG Y, WANG J, LIU C, LU Y, LIN X, LI W, ZHENG Z. Selectivity catalytic depolymerization of the hydrolyzed lignin to produce phenolic chemicals over nickel phosphides supported on HZSM-5 catalysts[J]. Chem Ind Eng Prog,2020,39(05):1792−1802.
    [23] HAFNER J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond[J]. J Comput Chem,2008,29(13):2044−2078. doi: 10.1002/jcc.21057
    [24] KRESSE, FURTHMULLER. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical review. B, Condensed matter, 1996, 54(16).
    [25] PERDEW, BURKE, WANG. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Physical review. B, Condensed matter, 1996, 54(23).
    [26] BLOCHL. Projector augmented-wave method[J]. Physical review. B, Condensed matter, 1994, 50(24).
    [27] GUO M, LI K, LIU L, ZHANG H, HU X, MIN X, JIA J, SUN T. Resource utilization of spent ternary lithium-ions batteries: Synthesis of highly active manganese-based perovskite catalyst for toluene oxidation[J]. J Taiwan Inst Chem E,2019,102:268−275. doi: 10.1016/j.jtice.2019.06.012
    [28] ZHOU M, SHI H, LI C, SHENG X, SUN Y, HOU M, NIU M, PAN X. Depolymerization and Activation of Alkali Lignin by Solid Acid-Catalyzed Phenolation for Preparation of Lignin-Based Phenolic Foams[J]. Ind Eng Chem Res,2020,59(32):14296−14305. doi: 10.1021/acs.iecr.0c01753
    [29] LIAO W T, WANG X, LI L, FAN D, WANG Z Y, CHEN Y, LI Y, XIE X A. Catalytic Alcoholysis of Lignin with HY and ZSM-5 Zeolite Catalysts[J]. Energ Fuel,2020,34(1):599−606. doi: 10.1021/acs.energyfuels.9b03729
    [30] LYU G, YOO C G, PAN X. Alkaline oxidative cracking for effective depolymerization of biorefining lignin to mono-aromatic compounds and organic acids with molecular oxygen[J]. Biomass and Bioenergy,2018,108:7−14. doi: 10.1016/j.biombioe.2017.10.046
    [31] LI S, ZHANG Z, YAN L, JIANG S, ZHU N, LI J, LI W, YU S. Fast synthesis of CuS and Cu9S5 microcrystal using subcritical and supercritical methanol and their application in photocatalytic degradation of dye in water[J]. The Journal of Supercritical Fluids.,2017,123:11−17. doi: 10.1016/j.supflu.2016.12.014
    [32] LIAO W, XIE X, LI L, LI Y, FAN D, SUN J, WANG X. Lignin liquefaction in supercritical methanol and ethanol solvent[J]. Chem Ind Eng Prog,2019,38(05):2205−2211.
    [33] DIAS J A, ANDRADE JR M A S, SANTOS H L S, MORELLI M R, MASCARO L H. Lanthanum–Based Perovskites for Catalytic Oxygen Evolution Reaction[J]. Chemelectrochem.,2020,7(15):3173−3192. doi: 10.1002/celc.202000451
    [34] HUANG X, KORANYI T, BOOT M, HENSEN E. Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics[J]. Green Chem.,2015,17(11):4941−4950. doi: 10.1039/C5GC01120E
    [35] BISWAS B, SINGH R, KUMAR J, KHAN A A, KRISHNA B B, BHASKAR T. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals[J]. Bioresource Technol.,2016,213:319−326. doi: 10.1016/j.biortech.2016.01.131
    [36] SINGH R, SINGH S, TRIMUKHE K D, PANDARE K V, BASTAWADE K B, GOKHALE D V, VARMA A J. Lignin–carbohydrate complexes from sugarcane bagasse: Preparation, purification, and characterization[J]. Carbohyd Polym.,2005,62(1):57−66. doi: 10.1016/j.carbpol.2005.07.011
    [37] SI X, ZHAO Y, SONG Q, CAO J, WANG R, WEI X. Hydrogenolysis of lignin-derived aryl ethers to monomers over a MOF-derived Ni/N-C catalyst[J]. React Chem Eng.,2020,5(5):886−895. doi: 10.1039/D0RE00040J
    [38] ZAVITSAS A A. The Relation between Bond Lengths and Dissociation Energies of Carbon–Carbon Bonds[J]. The Journal of Physical Chemistry A.,2003,107(6):897−898. doi: 10.1021/jp0269367
    [39] LINDSAY C M, BUSZEK R J, BOATZ J A, FAJARDO M E. The quest for greater chemical energy storage II: On the relationship between bond length and bond energy[J]. AIP Conference Proceedings.,2018,1979(1):150024.
    [40] WANG W, XU Y, ZHU Y, MA L. Selective depolymerization β–O–4 linkage of lignin over Pd/C and NaOH[J]. J Fuel Chem Technol,2021,49(12):1876−1882.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  39
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-03-08

目录

    /

    返回文章
    返回