Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
LI Ying, NIU Sheng-li, WANG Yong-zheng, HAN Kui-hua, ZHOU Wen-bo, WANG Jun. Mechanism of N2O reduction by biomass gasification gas reburning[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1435-1443. doi: 10.1016/S1872-5813(21)60092-0
Citation: LI Ying, NIU Sheng-li, WANG Yong-zheng, HAN Kui-hua, ZHOU Wen-bo, WANG Jun. Mechanism of N2O reduction by biomass gasification gas reburning[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1435-1443. doi: 10.1016/S1872-5813(21)60092-0

Mechanism of N2O reduction by biomass gasification gas reburning

doi: 10.1016/S1872-5813(21)60092-0
Funds:  The project was supported by the National Natural Science Foundation of China (51576117) and Important Project in the Scientific Innovation of Shandong Province (2019JZZY020305)
  • Received Date: 2021-03-11
  • Rev Recd Date: 2021-04-16
  • Available Online: 2021-05-07
  • Publish Date: 2021-10-30
  • A molecular modeling based on the density functional theory (DFT) and the transition state theory (TST) was performed to investigate the influence of biomass gas CO on the N2O decomposition catalyzed by CaO during reburning in the circulating fluidized bed boiler. The model for N2O adsorption onto the CaO(100) surfaces were constructed; and the processes of the N2O decomposition on the CaO(100) surface and the surface recovery of CaO(100) were investigated. The results illustrate that the energy barrier of N2O decomposition on the CaO(100) surface is much lower than that in homogeneous case, and CaO is therefore able to catalyze the N2O decomposition. The atomic O from N2O decomposition can poison the active sites O atom on the CaO(100) surface, while biomass gas CO can promote the regeneration of the active sites on the surface of CaO(100), which is beneficial for CaO to catalyze the N2O removal.
  • loading
  • [1]
    JI J, CHENG L, WEI Y, WANG J, GAO X, FANG M, WANG Q. Predictions of NOx/N2O emissions from an ultra-supercritical CFB boiler using a 2-D comprehensive CFD combustion model[J]. Particuology,2020,49:77−87. doi: 10.1016/j.partic.2019.04.003
    [2]
    ULUSOY B, LIN W, KARLSTRöM O, LI S, SONG W, GLARBORG P, DAM-JOHANSEN K, WU H. Formation of NO and N2O during raw and demineralized biomass char combustion[J]. Energy Fuels,2019,33(6):5304−5315. doi: 10.1021/acs.energyfuels.9b00622
    [3]
    苗苗, 张缦, 吕俊复, 杨海瑞, 张凯. 流化床燃烧中N2O生成机理与减排技术[J]. 清华大学学报(自然科学版),2020,60(6):507−517.

    MIAO Miao, ZHANG Man, LV Jun-fu, YANG Hai-rui, ZHANG Kai. N2O formation mechanism and control in circulating fluidized beds[J]. J Tsinghua Univ: Nat Sci Ed,2020,60(6):507−517.
    [4]
    RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science,2009,326(5949):123. doi: 10.1126/science.1176985
    [5]
    周昊, 张志中, 鲍强, 刘建成, 岑可法. 添加剂对NOxOUT脱硝及N2O、CO生成的影响特性[J]. 化工学报,2014,65(6):2232−2240. doi: 10.3969/j.issn.0438-1157.2014.06.038

    ZHOU Hao, ZHANG Zhi-zhong, BAO Qiang, LIU Jian-cheng, CEN Ke-fa. Influence of additives on NOxOUT denitration and formation of N2O and CO[J]. CIESC J,2014,65(6):2232−2240. doi: 10.3969/j.issn.0438-1157.2014.06.038
    [6]
    郝江涛, 于伟, 卢平, 王秦超, 何楠, 祝秀明, 徐森荣. 生物质高级再燃脱硝的影响因素与元素释放特性[J]. 燃料化学学报,2014,42(5):552−559.

    HAO Jiang-tao, YU Wei, LU Ping, WANG Qin-chao, HE Nan, ZHU Xiu-ming, XU Sen-rong. Influence factors and element release properties during NO reduction through biomass advanced reburning[J]. J Fuel Chem Technol,2014,42(5):552−559.
    [7]
    殷立宝, 阎维平, 叶学民, 王卓. CFB锅炉燃烧中N2O的生成机理与减排控制[J]. 锅炉制造,2003,(1):7−9. doi: 10.3969/j.issn.1674-1005.2003.01.003

    YIN Li-bao, YAN Wei-ping, YE Xue-min, Wang Zhuo. Formation mechanism of N2O in CFB boiler and some measures of decomposing N2O[J]. Boiler Manuf,2003,(1):7−9. doi: 10.3969/j.issn.1674-1005.2003.01.003
    [8]
    朱冲, 仇云霞. 适用循环流化床锅炉的脱硝技术[J]. 电力科技与环保,2015,31(3):15−17.

    ZHU Chong, QIU Yun-xia. Denitrification technology for circulating fluidized bed boiler[J]. Electr Power Environ Prot,2015,31(3):15−17.
    [9]
    李至, 祝培旺, 胡敏. 生物质再燃减少燃煤锅炉NOx排放的研究及应用[J]. 电站系统工程,2020,36(5):7−12.

    LI Zhi, ZHU Pei-wang, HU Min. Review of biomass re-burning study and application in China[J]. Power Syst Eng,2020,36(5):7−12.
    [10]
    杨章宁, 卢啸风, 倪刚, 冉燊铭. 生物质气与煤粉耦合燃烧再燃还原NO热态试验研究[J]. 动力工程学报,2020,40(10):781−785, 814.

    YANG Zhang-ning, LU Xiao-feng, NI Gang, RAN Shen-ming. Hot-state experiments on coupled reburning of biomass gas and pulverized coal for NO reduction[J]. J Chin Soc Power Eng,2020,40(10):781−785, 814.
    [11]
    李海英, 张泽, 姬爱民, 赵荣煊, 杨鹏. 生物质灰结渣和腐蚀特性[J]. 环境工程技术学报,2017,7(1):107−113. doi: 10.3969/j.issn.1674-991X.2017.01.016

    LI Hai-ying, ZHANG Ze, JI Ai-min, ZHAO Rong-xuan, YANG Peng. Behavior of slagging and corrosion of biomass ash[J]. J Environ Eng Technol,2017,7(1):107−113. doi: 10.3969/j.issn.1674-991X.2017.01.016
    [12]
    王洋, 董长青. 生物质燃烧和热解中钾的释放规律研究进展[J]. 化工进展,2020,39(4):1292−1301.

    WANG Yang, DONG Chang-qing. Release of K during biomass combustion and pyrolysis: a review[J]. Chem Ind Eng Prog,2020,39(4):1292−1301.
    [13]
    侯祥松, 李金平, 张海, 吕俊复, 岳光溪. 石灰石脱硫对循环流化床中N2O排放浓度的影响[J]. 电站系统工程,2005,21(3):1−3. doi: 10.3969/j.issn.1005-006X.2005.03.001

    HOU Xiang-song, LI Jin-ping, ZHANG hai, LU Jun-fu, YUE Guang-xi. Limestone effects on N2O emission in CFB combustors[J]. Power Syst Eng,2005,21(3):1−3. doi: 10.3969/j.issn.1005-006X.2005.03.001
    [14]
    周浩生, 陆继东, 周琥. 燃煤流化床加入氧化钙的氮转化机理[J]. 工程热物理学报,2000,21(5):647−651. doi: 10.3321/j.issn:0253-231X.2000.05.030

    ZHOU Hao-sheng, LU Ji-dong, ZHOU Hu. Nitrogen conberdion in fluidized bed combustion of coal with limestone addition[J]. J Eng Thermophys,2000,21(5):647−651. doi: 10.3321/j.issn:0253-231X.2000.05.030
    [15]
    胡笑颖. 生物质气再燃脱除燃煤流化床烟气中N2O的机理研究[D]. 北京: 华北电力大学(北京), 2011.

    HU Xiao-ying. Mechanism study on biomass derived gas reburning for N2O reduction in a fluidized bed combustor[D]. Beijing: North China Electric Power University, 2011.
    [16]
    WU L, QIN W, HU X, DONG C, YANG Y. Mechanism study on the influence of in situ SOx removal on N2O emission in CFB boiler[J]. Appl Surf Sci,2015,333:194−200. doi: 10.1016/j.apsusc.2015.01.229
    [17]
    KANTOROVICH L N, GILLAN M J. The energetics of N2O dissociation on CaO(001)[J]. Surf Sci,1997,376(1):169−176.
    [18]
    PISKORZ W, ZASADA F, STELMACHOWSKI P, KOTARBA A, SOJKA Z. DFT modeling of reaction mechanism and ab initio microkinetics of catalytic N2O decomposition over alkaline earth oxides: from molecular orbital picture account to simulation of transient and stationary rate profiles[J]. J Phys Chem C,2013,117(36):18488−18501. doi: 10.1021/jp405459g
    [19]
    HU X, WU L, JU S, DONG C, YANG Y, QIN W. Mechanistic study of catalysis on the decomposition of N2O[J]. Environ Eng Sci,2014,31(6):308−316. doi: 10.1089/ees.2013.0492
    [20]
    SNIS A, MIETTINEN H. Catalytic decomposition of N2O on CaO and MgO: Experiments and ab initio calculations[J]. J Phys Chem B,1998,102(14):2555−2561. doi: 10.1021/jp980093v
    [21]
    吴令男. 燃料在循环流化床锅炉燃烧过程中挥发分氮的迁移规律研究[D]. 北京: 华北电力大学(北京), 2017.

    WU Ling-nan. Study on the conversion mechanism of volatile nitrogen during fuel combstion in circulating fuidized bed boilers[D]. Beijing: North China Electric Power University, 2017.
    [22]
    BROQVIST P, GRÖNBECK H, PANAS I. Surface properties of alkaline earth metal oxides[J]. Surf Sci,2004,554(2):262−271.
    [23]
    厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对CaO(100)表面吸附甲醇影响的分子模拟[J]. 燃料化学学报,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006

    LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006
    [24]
    KAPTEIJN F, RODRIGUEZ-MIRASOL J, MOULIJN J A. Heterogeneous catalytic decomposition of nitrous oxide[J]. Appl Catal B: Environ,1996,9(1):25−64.
    [25]
    SNIS A, STRÖMBERG D, PANAS I. N2O adsorption and decomposition at a CaO(100) surface, studied by means of theory[J]. Surf Sci,1993,292(3):317−324.
    [26]
    GUO F Y, LONG C G, ZHANG J, ZHANG Z, LIU C H, YU K. Adsorption and dissociation of H2O on Al(111) surface by density functional theory calculation[J]. Appl Surf Sci,2015,324:584−589. doi: 10.1016/j.apsusc.2014.10.041
    [27]
    闫广精, 王春波, 张月, 陈亮. H2O对SO2在CaO表面上吸附的影响理论研究[J]. 燃料化学学报,2019,47(10):1163−1172. doi: 10.3969/j.issn.0253-2409.2019.10.002

    YAN Guang-jing, WANG Chun-bo, ZHANG Yue, CHEN Liang. Influence of H2O on the adsorption of SO2 on CaO (001) surface: A DFT study[J]. J Fuel Chem Technol,2019,47(10):1163−1172. doi: 10.3969/j.issn.0253-2409.2019.10.002
    [28]
    FU C M, KORCHAK V N, HALL W K. Decomposition of nitrous oxide on FeY zeolite[J]. J Catal,1981,68(1):166−171. doi: 10.1016/0021-9517(81)90049-X
    [29]
    张秀霞, 谢苗, 伍慧喜, 吕晓雪, 林日亿, 周志军. 钙对焦炭非均相还原NO的微观作用机理: DFT研究[J]. 燃料化学学报,2020,8(2):163−171. doi: 10.3969/j.issn.0253-2409.2020.02.005

    ZHANG Xiu-xia, XIE Miao, WU Hui-xi, LV Xiao-xue, LIN Ri-yi, ZHOU Zhi-jun. Microscopic effect mechanism of Ca on NO heterogeneous reduction by char: A DFT study[J]. J Fuel Chem Technol,2020,8(2):163−171. doi: 10.3969/j.issn.0253-2409.2020.02.005
    [30]
    WU L, HU X, QIN W, GAO P, DONG C, YANG Y. Effect of CaO on the selectivity of N2O decomposition products: A combined experimental and DFT study[J]. Surf Sci,2016,651:128−136. doi: 10.1016/j.susc.2016.04.004
    [31]
    LEGLISE J, PETUNCHI J O, HALL W K. N2O decomposition over iron-exchanged mordenite[J]. J Catal,1984,86(2):392−399. doi: 10.1016/0021-9517(84)90384-1
    [32]
    张磊, 杨学民, 谢建军, 丁同利, 姚建中, 宋文立, 林伟刚. 粉煤和石灰石加入位置对循环流化床燃煤过程NOx与N2O排放的影响[J]. 中国电机工程学报,2006,26(21):92−98. doi: 10.3321/j.issn:0258-8013.2006.21.015

    ZHANG Lei, YANG Xue-min, XIE Jian-jun, DING Tong-li, YAO Jian-zhong, SONG Wen-li, LIN Wei-gang. Effect of coal and limestone addition position on emission of NOx and N2O duringcoal combustion in a circulating fluidized bed combustor[J]. Proc CSEE,2006,26(21):92−98. doi: 10.3321/j.issn:0258-8013.2006.21.015
    [33]
    KAPTEIJN F, MARBÁN G, RODRIGUEZ-MIRASOL J, MOULIJN J A. Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts[J]. J Catal,1997,167(1):256−265. doi: 10.1006/jcat.1997.1581
    [34]
    DEBBAGH M N, BUENO-LÓPEZ A, LECEA C S M D, PÉREZ-RAMíREZ J. Kinetics of the N2O + CO reaction over steam-activated FeZSM-5[J]. Appl Catal A: Gen,2007,327(1):66−72. doi: 10.1016/j.apcata.2007.04.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (259) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return