Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
WANG Wen-xiu, GAO Xiu-juan, XIONG Pan, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Low-temperature oxidation of methanol to dimethoxymethane over Mo-Sn catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1487-1494. doi: 10.1016/S1872-5813(21)60094-4
Citation: WANG Wen-xiu, GAO Xiu-juan, XIONG Pan, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Low-temperature oxidation of methanol to dimethoxymethane over Mo-Sn catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1487-1494. doi: 10.1016/S1872-5813(21)60094-4

Low-temperature oxidation of methanol to dimethoxymethane over Mo-Sn catalyst

doi: 10.1016/S1872-5813(21)60094-4
Funds:  The project was supported by the National Natural Science Foundation of China (21773283, 21373253), CAS Interdisciplinary Innovation Team (BK2018001), the Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund, CAS (DNL 201903), the Youth Innovation Promotion Association CAS (2014155) and the Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (201624)
  • Received Date: 2021-03-31
  • Rev Recd Date: 2021-04-21
  • Available Online: 2021-05-12
  • Publish Date: 2021-10-30
  • A new Mo-Sn catalyst prepared by hydrothermal method was used for the synthesis of dimethoxymethane (DMM) from methanol oxidation. The catalyst with low Mo content can achieve low-temperature oxidation of methanol to DMM with high selectivity. The influence of Mo content on the structure and the catalytic performance of the catalyst was investigated. It was found that Mo1Sn10 catalyst showed the best catalytic performance under the conditions of 140 °C and atmospheric pressure, the methanol conversion was 14.2%, and the selectivity of DMM reached 88.9% without the formation of COx during the reaction process. The catalysts were characterized by XRD, Raman, FT-IR, XPS, NH3-TPD and H2-TPR. The results showed that the catalysts with different Mo content had obvious differences in structure and performance. Lower Mo content was more conducive to the formation of Mo5+ and MoOx, and the resulting changes in acidity and redox properties were the important reasons for the excellent performance of the catalysts.
  • loading
  • [1]
    LIU X M, LU G Q, YAN Z F, YAN Z F, JORGE B. Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2[J]. Ind Eng Chem Res,2003,42(25):6518−6530. doi: 10.1021/ie020979s
    [2]
    GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catal,2011,1(4):365−384. doi: 10.1021/cs200055d
    [3]
    BEHRENS M, STUDT F, KASATKIN I, KUHL S, HAVECKER M, ABILD-PEDERERSEN F, ZANDER S, GIRGSDIES F, KURR P, KNIEP B L, TOVAR M, FISCHER R W, NORSKOV J K, SCHLOGL R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science,2012,336(3):893−897.
    [4]
    TIAN P, WEI Y, YE M, LIU Z M. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catal,2015,5(3):1922−1938. doi: 10.1021/acscatal.5b00007
    [5]
    MARCINIAK A A, ALVES O C, APPEL L G, MOTA J A. Synthesis of dimethyl carbonate from CO2 and methanol over CeO2: Role of copper as dopant and the use of methyl trichloroacetate as dehydrating agent[J]. J Catal,2019,371(1):88−95.
    [6]
    YANG Z, FENG J, CHENG H, LIU Y X, JIANG J C. Directional depolymerization of lignin into high added-value chemical with synergistic effect of binary solvents[J]. Bioresour Technol,2021,321(12):124−440.
    [7]
    LI S, PENG D, YU J. Morphologically controllable Li plating with stable electrochemistry realized in a newly developed DOL-DMM electrolyte system on Au-modified Cu current collector[J]. Ionics,2020,26(8):3979−3988. doi: 10.1007/s11581-020-03527-3
    [8]
    BADMAEV S D, SMORYGINA A S, PAUKSHTIS E A, BELYAEV V D, SOBYANIN V A, PARMON V N. Gas-phase carbonylation of dimethoxymethane to methyl methoxyacetate on solid acids: The effect of acidity on the catalytic activity[J]. Kinet Catal,2018,59(1):99−103. doi: 10.1134/S0023158418010020
    [9]
    CHONG J M, SHEN L X. Preparation of chloromethyl methyl ether revisited[J]. Synth Commun,1998,28(15):2801−2806. doi: 10.1080/00397919808004855
    [10]
    NOUGUIER R, MIGNON V, GRAS J. Synthesis of methylene acetals in the D-glucose, D-galactose, D-mannose, and D-fructose series by an improved transacetalation reaction from dimethoxymethane[J]. Carbohydr Res,1995,277(2):339−345. doi: 10.1016/0008-6215(95)00218-I
    [11]
    YANG Z, FENG J, CHENG H, LIU Y X, JIAN J C. Directional depolymerization of lignin into high added-value chemical with synergistic effect of binary solvents[J]. Bioresour Technol,2021,321(1):124440.
    [12]
    WANG J, LIU J, SONG H, CHEN J. Heteropolyacids as efficient catalysts for the synthesis of precursors to ethylene glycol by the liquid-phase carbonylation of dimethoxymethane[J]. Chem Lett,2015,44(6):806−808. doi: 10.1246/cl.150131
    [13]
    LI M, LONG Y, DENG Z, ZHANG H, YANG X G, WANG G Y. Ruthenium trichloride as a new catalyst for selective production of dimethoxymethane from liquid methanol with molecular oxygen as sole oxidant[J]. Catal Commun,2015,68(4):46−48.
    [14]
    LIU H C, IGLESIA E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12−nPO40 keggin structures[J]. J Phys Chem B,2003,107(39):10840−10847. doi: 10.1021/jp0301554
    [15]
    FU Y, SHEN J. Selective oxidation of methanol to dimethoxymethane under mild conditions over V2O5/TiO2 with enhanced surface acidity[J]. Chem Commun,2007,21(21):2172−2174.
    [16]
    TAO M, WANG H, BIN L, ZHAO J X, CAI Q H. Highly selective oxidation of methanol to dimethoxymethane over $ {\rm{SO}}_4^{2 - } $-V2O5-ZrO2[J]. New J Chem,2017,41(16):8370−8376. doi: 10.1039/C7NJ01295K
    [17]
    CHEN S, MA X. The role of oxygen species in the selective oxidation of methanol to dimethoxymethane over VOx/TS-1 catalyst[J]. J Ind Eng Chem,2017,45(9):296−300.
    [18]
    AI M. The production of methyl formate by the vapor-phase oxidation of methanol[J]. J Catal,1982,21(77):279−288.
    [19]
    LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, Tan Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem,2015,17(2):1057−1064. doi: 10.1039/C4GC01591F
    [20]
    ZHANG Z Z, ZHANG Q D, JIA L, WANG W F, SHAO P T, WANG P, HE X, HAN Y Z, TSUBAKI N, TAN Y S. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol,2016,15(6):6109−6117.
    [21]
    杨奇, 高秀娟, 冯茹, 李明杰, 张俊峰, 张清德, 韩怡卓, 谭猗生. 水热合成的MoO3-SnO2催化剂催化氧化二甲醚的性能研究[J]. 燃料化学学报,2019,47(8):934−941. doi: 10.3969/j.issn.0253-2409.2019.08.005

    YANG Qi, GAO Xiu-juan, FENG Ru, LI Ming-jie, ZHANG Jun-feng, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. MoO3-SnO2 catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. J Fuel Chem Technol,2019,47(8):934−941. doi: 10.3969/j.issn.0253-2409.2019.08.005
    [22]
    陈文龙, 刘海超. 甲醇选择氧化金属氧化物催化剂的结构与其催化性能的关系[J]. 物理化学学报,2012,28(10):2315−2356. doi: 10.3866/PKU.WHXB201209146

    CHEN Wen-long, LIU Hai-chao. Relationship between the structures of metal oxide catalysts and their properties in selective oxidation of methanol[J]. Acta Phys-Chim Sin,2012,28(10):2315−2356. doi: 10.3866/PKU.WHXB201209146
    [23]
    LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal,2003,217(1):222−232.
    [24]
    GONCALVES F, MEDEIROS P R S, EON J G, APPEL L G. Active sites for ethanol oxidation over SnO2-supported molybdenum oxides[J]. Appl Catal A: Gen,2000,193(1/2):195−202.
    [25]
    杨奇. 钼锡催化剂上二甲醚低温氧化机理研究[D]. 北京: 中国科学院大学, 2019.

    YANG Qi. Study on the mechanism of the low-temperature oxidation of dimethyl ether over MoO3-SnO2 catalyst[D]. Beijing: University of Chinese Academy of Sciences, 2019.
    [26]
    HANG Z Z, ZHANG Q D, JIA L Y, WANG W F, ZHANG T, HAN Y Z, TSUBAKI N, TAN Y S. Effects f tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ther under mild conditions[J]. Catal Sci Technol,2016,6(9):2975−2983. doi: 10.1039/C5CY01569C
    [27]
    YANG J, XIAO X, CHEN P, ZHU K, CHENG K, YE K, WANG G L, CAO D X, YAN J. Creating oxygen-vacancies in MoO3−x nanobelts toward high volumetric energy-density asymmetric superercapacitors with long lifespan[J]. Nano Energy,2019,58(1):455−465.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (310) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return