Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
ZHOU Cheng, NAN Yong-yong, ZHA Fei, TIAN Hai-feng, TANG Xiao-hua, CHANG Yue. Application of metal-organic frameworks in CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1444-1457. doi: 10.1016/S1872-5813(21)60097-X
Citation: ZHOU Cheng, NAN Yong-yong, ZHA Fei, TIAN Hai-feng, TANG Xiao-hua, CHANG Yue. Application of metal-organic frameworks in CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1444-1457. doi: 10.1016/S1872-5813(21)60097-X

Application of metal-organic frameworks in CO2 hydrogenation

doi: 10.1016/S1872-5813(21)60097-X
Funds:  The project was supported by National Natural Science Foundation of China (21865031)
  • Received Date: 2021-03-16
  • Rev Recd Date: 2021-04-21
  • Available Online: 2021-05-18
  • Publish Date: 2021-10-30
  • The dramatic increase in atmospheric CO2 concentrations has attracted people's attention, and many strategies have been developed to convert CO2 into high-value chemicals. Metal-organic frameworks (MOFs), as a class of versatile materials, can be used in the CO2 capture and conversion because of their unique porosity, large specific surface area, rich pore structure, multiple active centers, good stability and recyclability. Various functional nanomaterials have been designed and synthesized based on metal organic framework (MOF) of crystalline porous materials to meet these challenges. Herein, in this review, the latest processes of MOFs in field the of CO2 hydrogenation to carbon monoxide, methane, formic acid, methanol and olefins are summarized, and the synthesis methods of catalysts based on MOFs and the reasons for their high catalytic activity are analyzed. Besides, a brief introduction to improve the catalytic activity of the new MOF material and explore the feasible strategies for CO2 conversion are advised. Finally, the paper discusses the main challenges and opportunities of MOF-type catalysts in CO2 chemical conversion, and presents a brief outlook on further developments in this research area.
  • loading
  • [1]
    梁兵连, 段洪敏, 侯宝林, 苏雄, 黄延强, 王爱琴, 王晓东, 张涛. 二氧化碳加氢合成低碳烯烃的研究进展[J]. 化工进展,2015,34(10):3746−3754.

    LIANG Bing-lian, DUAN Hong-min, HOU Bao-lin, SU Xiong, HUANG Yan-qiang, WANG Ai-qin, WANG Xiao-dong, ZHANG Tao. Research progress on synthesis of light olefins by hydrogenation of carbon dioxide[J]. Chem Ind Eng Prog,2015,34(10):3746−3754.
    [2]
    LIU Q, WU L, JACKSTELL R, BELLER M. Using carbon dioxide as a building block in organic synthesis[J]. Nat Commun,2015,6:5933. doi: 10.1038/ncomms6933
    [3]
    CHU S. Carbon capture and sequestration[J]. Science,2009,325(5948):15−99.
    [4]
    DONG J, CUI P, SHI P F, CHENG P, ZHAO B. Ultra strong alkali-resisting lanthanide-zeolites assembled by [Ln60] nanocages[J]. J Am Chem Soc,2015,137(51):15988−15991. doi: 10.1021/jacs.5b10000
    [5]
    KOSSEV K, KOSEVA N, TROEV K. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide tooxiranes[J]. J Mol Catal A: Chem,2003,194(1-2):29−37. doi: 10.1016/S1381-1169(02)00513-7
    [6]
    XIE Y, WANG T T, LIU X H, ZOU K, DENG W Q. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer[J]. Nat Commun,2013,4(1):1−7.
    [7]
    CUI G K, WANG J J, ZHANG S J. Active chemisorption sites in functionalized ionic liquids for carbon capture[J]. Chem Soc Rev,2016,45(15):4307−4339. doi: 10.1039/C5CS00462D
    [8]
    SUN Q, JIN Y Y, AGUILA B, MENG X J, MA S Q, XIAO F S. Porous ionic polymers as a robust and efficient platform for capture and chemical fixation of atmospheric CO2[J]. ChemSusChem,2017,10(6):1160−1165. doi: 10.1002/cssc.201601350
    [9]
    FENG X, DING X, JIANG D L. Covalent organic frameworks[J]. Chem Commun,2012,41(18):6010−6022.
    [10]
    LIU Y, GHIMIRE P, JARONIEC M J. Copper benzene-1, 3, 5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents[J]. J Colloid Interface Sci,2019,535:122−132. doi: 10.1016/j.jcis.2018.09.086
    [11]
    LI L Y, WANG J W, ZHANG Z G, YANG Q W, SU B G, BAO Z B, REN Q L. Inverse adsorption separation of CO2/C2H2 mixture in cyclodextrin-based metal-organic frameworks[J]. ACS Appl Mater Interfaces,2018,11(2):2543−2550.
    [12]
    WANG X, TAO Q, BAO S S, ZHANG Y C, SHEN X, ZHENG L M, ZHU D R. Facile synthesis of a water stable 3D Eu-MOF showing high proton conductivity and its application as a sensitive luminescent sensor for Cu2+ ions[J]. J Mater Chem A,2016,4(42):16484−16489. doi: 10.1039/C6TA06792A
    [13]
    BAI Y Z, YI B L, LI J, JIANG S F, ZHANG H J, SHAO Z G, SONG Y Z. A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework[J]. Chin J Catal,2016,37(7):1127−1133. doi: 10.1016/S1872-2067(15)61104-4
    [14]
    CUI P, MA Y G, LI H H, ZHANG B, LI J R, CHENG P, BALBUENA P B, ZHOU H C. Multipoint interactions enhanced CO2 uptake: A zeolite-like zinc-tetrazole framework with 24-nuclear zinc cages[J]. J Am Chem Soc,2012,134(46):18892−18895. doi: 10.1021/ja3063138
    [15]
    DING M, FLAIG R W, JIANG H L, YAGHI O M. Carbon capture and conversion using metal–organic frameworks and MOF-based materials[J]. Chem Soc Rev,2019,48(10):2783−2828. doi: 10.1039/C8CS00829A
    [16]
    张维中, 温月丽, 宋镕鹏, 张倩, 王斌, 黄伟. 金属有机骨架材料应用于二氧化碳加氢催化反应的研究进展[J]. 天然气化工(C1化 学与化工),2020,45(1):113−119+128.

    ZHANG Wei-zhong, WEN Yue-li, SONG Rong-peng, ZHANG Qian, WANG Bin, HUANG Wei. Research progress in the application of metal organic framework materials to the catalytic reaction of carbon dioxide hydrogenation[J]. Natural Gas Chem Ind (C1 Chem Chem Eng),2020,45(1):113−119+128.
    [17]
    MAINA J W, POZO-GONZALO C, KONG L, SCHÜTZ J, HILL M & DUMÉE L F. Metal organic framework based catalysts for CO2 conversion[J]. Mater Horiz,2017,4(3):345−361. doi: 10.1039/C6MH00484A
    [18]
    OLAJIRE A A. Synthesis chemistry of metal-organic frameworks for CO2 capture and conversion for sustainable energy future[J]. Renewable Sustainable Energy Rev,2018,92:570−607. doi: 10.1016/j.rser.2018.04.073
    [19]
    赵建波, 袁海丰, 谢冰, 葛黎明, 廖小伟, 王馨, 李晓蒙. 基于金属有机框架的催化应用研究进展[J]. 化工新型材料,2020,48(2):50−54.

    ZHAO Jian-bo, YUAN Hai-feng, XIE Bing, GE Li-ming, LIAO Xiao-wei, WANG Xin, LI Xiao-meng. Research progress in catalytic applications based on metal organic frameworks[J]. New Chem Mater,2020,48(2):50−54.
    [20]
    HE H, PERMAN J A, ZHU G, MA S. Metal-organic frameworks for CO2 chemical transformations[J]. Small,2016,12(46):6309−6324. doi: 10.1002/smll.201602711
    [21]
    HOU S L, DONG J, ZHAO B. Formation of C-X bonds in CO2 chemical fixation catalyzed by metal-organic frameworks[J]. Adv Mater,2020,32(3):1806163. doi: 10.1002/adma.201806163
    [22]
    YANG H, ZHANG C, GAO P, WANG H, Li X P, ZHONG L S, WEI W, SUN Y H. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catal Sci Technol,2017,7(20):4580−4598. doi: 10.1039/C7CY01403A
    [23]
    KULD S, THORHAUGE M, FALSIG H, ELKJÆR C F, HELVEG S, CHORKENDORFF I, SEHESTED J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis[J]. Science,2016,352:969−974. doi: 10.1126/science.aaf0718
    [24]
    HA NN, HA NTT, LONG NB, CAM LM. Conversion of carbon monoxide into methanol on alumina-supported cobalt catalyst: role of the support and reaction mechanism-A theoretical study[J]. Catalysts,2019,9(1):6.
    [25]
    CHAKRABORTY S, RENE E R, LENS P N L, VEIGA M C, KENNES C. Enrichment of a solventogenic anaerobic sludge converting carbon monoxide and syngas into acids and alcohols[J]. Bioresour Technol,2019,272:130−136.
    [26]
    ZHANG TZ, TROLL C, RIEGER B, KINTRUP J, SCHLÜTER O F K, WEBER R. Reaction kinetics of oxy-chlorination of carbon monoxide to phosgene based on copper(II) chloride[J]. Appl Catal A: Gen,2009,357(1):51−57. doi: 10.1016/j.apcata.2008.12.035
    [27]
    ZHU Y, PAN X, JIAO F, LI J, YANG J H, Ding M Z, HAN Y, LIU Z, BAO X H. Role of Manganese Oxide in Syngas Conversion to Light Olefins[J]. ACS Catal,2017,7(4):2800−2804. doi: 10.1021/acscatal.7b00221
    [28]
    XU H, LI Y, LUO X, GE J. Monodispersed gold nanoparticles supported on a zirconium-based porous metal-organic framework and their high catalytic ability for the reverse water–gas shift reaction[J]. Chem Commun,2017,53(56):7953−7956.
    [29]
    ZHANG J, AN B, HONG Y H, MENG Y P, HU X F, WANG C, LIN J D, LIN W B & WANG Y. Pyrolysis of metal–organic frameworks to hierarchical porous Cu/Zn-nanoparticle@carbon materials for efficient CO2 hydrogenation[J]. Mater Chem Front,2017,1(11):2405−2409. doi: 10.1039/C7QM00328E
    [30]
    ZHENG Z, XU H, XU Z, GE J. A monodispersed spherical Zr-based metal-organic framework catalyst, Pt/Au@ Pd@UiO-66, comprising an Au@Pd core-shell encapsulated in a UiO-66 center and its highly selective CO2 hydrogenation to produce CO[J]. Small,2018,14(5):1702812. doi: 10.1002/smll.201702812
    [31]
    LI Y H, CAI X H, CHEN S J, ZHANG H, KEVIN H L, HONG J Q, CHEN B H, KUO D H, WANG W J. Highly dispersed metal carbide on ZIF-derived pyridinic-N-doped carbon for CO2 enrichment and selective hydrogenation[J]. ChemSusChem,2018,11(6):1040−1047. doi: 10.1002/cssc.201800016
    [32]
    GUTTERØD E S, ØIEN-ØDEGAARD S, BOSSERS K, NIEUWELINK A E, MANZOLI M, BRAGLIA L, LAZZARINI A, BORFECCHIA E, AHMADIGOLTAPEH S, BOUCHEVREAU B, LØNSTAD-BLEKEN B T, HENRY R, LAMBERTI C, BORDI S, WECKHUYSEN B M, LILLERUD K P & OLSBYE U. CO2 Hydrogenation over Pt-Containing UiO-67 Zr-MOFs-The Base Case[J]. Ind Eng Chem Res,2017,56(45):13206−13218. doi: 10.1021/acs.iecr.7b01457
    [33]
    THAMPI K R, KIWI J, GRAETZEL M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure[J]. Nature,1987,327(6122):506−508. doi: 10.1038/327506a0
    [34]
    CHEN X, SU X, DUAN H, LIANG, B, HUANG Y& ZHANG T. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: Controlled product selectivity and a mechanism study[J]. Catal Today,2017,281:312−318. doi: 10.1016/j.cattod.2016.03.020
    [35]
    黄佟霞. Ni/膨润土催化剂的制备及其催化CO2甲烷化的研究[D]. 南宁: 广西大学, 2018.

    HUANG Tong-xia. Preparation of Ni/Bentonite catalyst and its catalytic CO2 methanation[D]. Nanning: Guangxi University, 2018.
    [36]
    ABDEL-MAGEED A M, WIDMANN D, OLESEN S E, HORKENDORFF I, BISKUPEK J, BEHM R J. Selective CO methanation on Ru/TiO2 catalysts: Role and influence of metal-support interactions[J]. ACS Catal,2015,5(11):6753−6763. doi: 10.1021/acscatal.5b01520
    [37]
    LIN X H, WANG S B, TU W G, HU Z B, DING Z X, HOU Y D, XU R, DAI W X. MOF-derived hierarchical hollow spheres composed of carbon-confined Ni nanoparticles for efficient CO2 methanation[J]. Catal Sci Technol,2019,9(3):731−738. doi: 10.1039/C8CY02329H
    [38]
    ZHEN W, LI B, LU G, MA, J. Enhancing catalytic activity and stability for CO2 methanation on Ni–Ru/γ-Al2O3 via modulating impregnation sequence and controlling surface active species[J]. RSC Adv,2014,4(32):16472−16479. doi: 10.1039/C3RA47982J
    [39]
    ZHEN W, GAO F, TIAN B, DING P, DENG Y B, ZHEN L, GAO H B, LU G X. Enhancing activity for carbon dioxide methanation by encapsulating (111) facet Ni particle in metal-organic frameworks at low temperature[J]. J Catal,2017,348:200−211. doi: 10.1016/j.jcat.2017.02.031
    [40]
    LIPPI R, HOWARD S C, BARRON H, EASTON C D, MADSEN I C, WADDINGTON L J, VOGT C, HILL M R, SUMBY C J, DOONAN C J, KENNEDY D F. Highly active catalyst for CO2 methanation derived from a metal organic framework template[J]. J Mater Chem A,2017,5(25):12990−12297. doi: 10.1039/C7TA00958E
    [41]
    LI W H, ZHANG A F, JIANG X, CHEN C, LIU Z G, SONG C S, GUO X W. Low temperature CO2 methanation: ZIF-67-derived Co-based porous carbon catalysts with controlled crystal morphology and size[J]. ACS Sustainable Chem Eng,2017,5(9):7824−7831. doi: 10.1021/acssuschemeng.7b01306
    [42]
    WANG W H, HIMEDA Y, MUCKERMAN J T, MANBECK G F, FUJITA E. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo-and Electrochemical CO2 Reduction[J]. Chem Rev,2015,115(23):12936−12973. doi: 10.1021/acs.chemrev.5b00197
    [43]
    LOGES B, BODDIEN A, GÄRTNER F, JUNGE H, BELLER M. Catalytic generation of hydrogen from formic acid and its derivatives: useful hydrogen storage materials[J]. Top Catal,2010,53(13/14):902−914. doi: 10.1007/s11244-010-9522-8
    [44]
    MAIHOM T, WANNAKAO S, BOEKFA B, LIMTRAKUL J. Production of formic acid via hydrogenation of CO2 over a copper-alkoxide-functionalized MOF: A mechanistic study[J]. J Phys Chem C,2013,117(34):17650−17658. doi: 10.1021/jp405178p
    [45]
    YE J, JOHNSON J K. Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation[J]. ACS Catal,2015,5(5):2921−2928. doi: 10.1021/acscatal.5b00396
    [46]
    YE J, JOHNSON J K. Screening Lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66[J]. ACS Catal,2015,5(10):6219−6229. doi: 10.1021/acscatal.5b01191
    [47]
    WANG S, HOU S, WU C, ZHAO Y, MA X. RuCl3 anchored onto post-synthetic modification MIL-101(Cr)-NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid[J]. Chin Chem Lett,2019,30(2):398−402. doi: 10.1016/j.cclet.2018.06.021
    [48]
    ZHANG C, LIAO P, WANG H, SUN J, GAO P. Preparation of novel bimetallic CuZn-BTC coordination polymer nanorod for methanol synthesis from CO2 hydrogenation[J]. Mater Chem Phys,2018,215:211−220. doi: 10.1016/j.matchemphys.2018.05.028
    [49]
    TSHUMA P, MAKHUBELA B C E, ÖHRSTRÖM L, BOURNE S A, CHATTERJEE N, BEAS I N, DARKWA J, MEHLANA G. Cyclometalation of lanthanum(iii) based MOF for catalytic hydrogenation of carbon dioxide to formate[J]. RSC Adva.,2020,10(6):3593−3605. doi: 10.1039/C9RA09938G
    [50]
    RUNGTAWEEVORANIT B, BAEK J, ARAUJO J R, ARCHANJO B S, CHOI K M, YAGHI O M, SOMORJAI G A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol[J]. Nano Lett,2016,16(12):7645−7649. doi: 10.1021/acs.nanolett.6b03637
    [51]
    AN B, ZHANG J, CHENG K, JI P, WANG C, LIN W. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2[J]. J Am Chem Soc,2017,139(10):3834−3840. doi: 10.1021/jacs.7b00058
    [52]
    ZHANG X, SUN J, WEI G, LIU Z, YANG H, WANG K, FEI H. In Situ generation of an n-heterocyclic carbene functionalized metal-organic framework by postsynthetic ligand exchange: efficient and selective hydrosilylation of CO2[J]. Angew Chem Int Ed,2019,58(9):2844−2849. doi: 10.1002/anie.201813064
    [53]
    YIN Y, HU B, LI X, ZHOU X, HONG X, LIU G. Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol[J]. Appl Catal B: Environ,2018,234:143−152. doi: 10.1016/j.apcatb.2018.04.024
    [54]
    YE J, JOHNSON J K, Catalytic hydrogenation of CO2 to methanol in a Lewis pair functionalized MOF[J]. Catal Sci Technol, 2016, 6(24): 8392–8405.
    [55]
    VISCONTIC G, MARTINELLI M, FALBO L, INFANTES-MOLINAA A, LIETTIA L, FORZATTIA P, IAQUANIELLOC G, PALOC E, PICUTTID B, BRIGNOLIET F. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst[J]. Appl Catal B: Environ,2017,200:530−542. doi: 10.1016/j.apcatb.2016.07.047
    [56]
    HU S, LIU M, DING F, SONG C, ZHANG G, GUO X. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins[J]. J CO2 Util,2016,15:89−95. doi: 10.1016/j.jcou.2016.02.009
    [57]
    LIU J, SUN Y, JIANG X, ZHANG A, SONG C, GUO X. Pyrolyzing ZIF-8 to N-doped porous carbon facilitated by iron and potassium for CO2 hydrogenation to value-added hydrocarbons[J]. J CO2 Util,2018,25:120−127. doi: 10.1016/j.jcou.2018.03.015
    [58]
    LIU J, ZHANG A, LIU M, HU S, DING F, SONG C, GUO X. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. J CO2 Util,2017,21:100−107. doi: 10.1016/j.jcou.2017.06.011
    [59]
    RAMIREZ A, GEVERS L, BAVYKINA A, OULD-CHIKH S, GASCON J. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catal,2018,8(10):9174−9182. doi: 10.1021/acscatal.8b02892
    [60]
    MÜLLER M, HERMES S, KÄHLER K, VAN DEN BERG M W, MUHLER M, FISCHER R A. Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis[J]. Chem Mater,2008,20(14):4576−4587. doi: 10.1021/cm703339h
    [61]
    ZHEN W, LI B, LU G, MA J. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion[J]. Chem Commun,2015,51(9):1728−1731.
    [62]
    YAZHI Y, BING H, LIU G L, ZHOU X H, HONG X L. ZnO@ZIF-8 core-shell structure as host for highly selective and Stable Pd/ZnO catalysts for hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin,2019,35(3):327−336. doi: 10.3866/PKU.WHXB201803212
    [63]
    赵志伟. 过渡金属催化剂的制备及二氧化碳催化加氢性能研究[D]. 合肥: 中国科学技术大学, 2018.

    Zhao Zhi-wei. Preparation of transition metal catalysts and study on performance of carbon dioxide catalytic hydrogenation[D]. Hefei: University of Science and Technology of China, 2018.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (450) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return