Volume 49 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
WANG Yue, DING Hua, WU Lin-lin, ZHANG Yun-peng, ZHOU Qi, QU Si-jian. The characteristics of maceral in Huangling coal and its in-situ pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1567-1576. doi: 10.1016/S1872-5813(21)60102-0
Citation: WANG Yue, DING Hua, WU Lin-lin, ZHANG Yun-peng, ZHOU Qi, QU Si-jian. The characteristics of maceral in Huangling coal and its in-situ pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1567-1576. doi: 10.1016/S1872-5813(21)60102-0

The characteristics of maceral in Huangling coal and its in-situ pyrolysis

doi: 10.1016/S1872-5813(21)60102-0
Funds:  The project was supported by the Fund for Development of Science and Technology of CCRI (2020CX-Ⅱ-07)
  • Received Date: 2021-03-31
  • Rev Recd Date: 2021-04-28
  • Available Online: 2021-05-27
  • Publish Date: 2021-11-30
  • In order to reveal the pyrolysis and coking characteristics of different components in coal, the macerals in Huangling coal were enriched by centrifugation, and the pyrolysis characteristics of macerals were studied. The transformation characteristics of macerals during pyrolysis were observed in-situ by heating stage microscope. The purities of vitrinite and inertinite are more than 90% and 80%, respectively, while the purity of liptinite is nearly 70%. The initial pyrolysis temperature of liptinite is about 385 ℃, and those of the other macerals are all about 410 ℃. The maximum pyrolysis temperatures are between 470−480 ℃ for all macerals studied. The maximum weight loss rate and the total weight loss rate decrease in the order of liptinite, vitrinite, semi-vitrinite and inertinite. The softening temperature of the liptinite (including sapropelic groundmass) is 350−370 ℃, while that of vitrinite is about 410−420 ℃ as shown by the in-situ pyrolysis in a heating stage microscope. The pyrolysis process of vitrinite goes through the stages of edge shrinking, pore formation, surface softening, the formation of liquid phase, and solidification. Only slight morphological changes are observed in semi-vitrinite, while no changes are observed in inertinite. The active components in Huangling coal are vitrinite and liptinite, and the liptinite can promote the softening and melting characteristics of the adjacent vitrinite.
  • loading
  • [1]
    杨桃, 刘犇, 宋燕, 马兆昆, 宋怀河, 刘占军. 高温煤沥青中间相热转化行为[J]. 新型炭材料,2019,34(6):546−551.

    YANG Tao, LIU Ben, SONG Yan, MA Zhao-kun, SONG Huai-he, LIU Zhan-jun. Formation and transformation behavior of mesophase from three high softening-point pitches[J]. New Carbon Mater,2019,34(6):546−551.
    [2]
    NAMKUNG H, HU X, KIM H, WANG F, YU G. Evaluation of sintering behavior of ash particles from coal and rice straw using optical heating stage microscope at high temperature fouling conditions[J]. Fuel Process Technol,2016,149:195−208. doi: 10.1016/j.fuproc.2016.04.020
    [3]
    XU J, ZHAO F, GUO Q, YU G, LIU X, WANG F. Characterization of the melting behavior of high-temperature and low-temperature ashes[J]. Fuel Process Technol,2015,134:441−448. doi: 10.1016/j.fuproc.2014.12.054
    [4]
    LIU M, BAI J, KONG L, BAI Z, HE C, LI W. The correlation between coal char structure and reactivity at rapid heating condition in TGA and heating stage microscope[J]. Fuel,2020,260:116318. doi: 10.1016/j.fuel.2019.116318
    [5]
    张林民, 王焦飞, 白永辉, 苏暐光, 宋旭东, 于广锁. 宁东煤灰层/熔渣界面煤焦气化反应特性原位研究[J]. 燃料化学学报,2020,48(2):129−136. doi: 10.3969/j.issn.0253-2409.2020.02.001

    ZHANG Lin-min, WANG Jiao-fei, BAI Yong-hui, SU Wei-guang, SONG Xu-dong, YU Guang-suo. In-situ study of Ningdong char particles gasification characteristics on the interface of ash layer and slag[J]. J Fuel Chem Technol,2020,48(2):129−136. doi: 10.3969/j.issn.0253-2409.2020.02.001
    [6]
    张新沙, 宋旭东, 苏暐光, 卫俊涛, 白永辉, 于广锁. 宁东煤煤焦-CO2气化反应特性的原位研究[J]. 燃料化学学报,2019,47(4):385−392. doi: 10.1016/S1872-5813(19)30018-0

    ZHANG Xin-sha, SONG Xu-dong, SU Wei-guang, WEI Jun-tao, BAI Yong-hui, YU Guang-suo. In-situ study on gasification reaction characteristics of Ningdong coal chars with CO2[J]. J Fuel Chem Technol,2019,47(4):385−392. doi: 10.1016/S1872-5813(19)30018-0
    [7]
    常海洲, 曾凡桂, 李文英, 李美芬, 李军, 谢克昌. 煤及其显微组分热解过程中的半焦收缩动力学[J]. 物理化学学报,2008,24(4):675−680. doi: 10.3866/PKU.WHXB20080422

    CHANG Hai-zhou, ZENG Fan-gui, LI Wen-ying, LI Mei-fen, LI Jun, XIE Ke-chang. Semicoke contraction kinetics of coal and its macerals in pyrolysis[J]. Acta Phys-chim Sin,2008,24(4):675−680. doi: 10.3866/PKU.WHXB20080422
    [8]
    张永发, 张慧荣, 田芳, 孙亚玲. 无烟粉煤成型块炭化行为及热解气体生成规律[J]. 煤炭学报,2011,36(4):670−675.

    ZHANG Yong-fa, ZHANG Hui-rong, TIAN Fang, SUN Ya-ling. The characteristics of anthracite briquette carbonization and the regularity of pyrolysis gas generation during carbonization[J]. J China Coal Soc,2011,36(4):670−675.
    [9]
    姚海. 流化床中煤颗粒热膨胀破碎特性的实验研究与定量评价[D]. 武汉: 华中科技大学, 2006.

    YAO Hai. experimental study and quantitative estimate on thermal expansion and fragmentation characteristics of coal particle in fluidized bed[D]. Wuhan: Huazhong University of Science & Technology, 2006.
    [10]
    沈寓韬, 张卫华, 鲁锡兰, 田英奇, 张德祥. 不同炼焦煤显微组分特点及其对结焦性能的影响[J]. 煤炭技术,2016,35(10):316−318.

    SHEN Yu-tao, ZHANG Wei-hua, LU Xi-lan, TIAN Ying-qi, ZHANG De-xiang. Characterization of coking coal maceral and its relationship to coking properties[J]. Coal Technol,2016,35(10):316−318.
    [11]
    罗俊文, 叶道敏, 黄海智, 肖文钊. 西南地区某些煤中镜质体的加热特征[J]. 煤田地质与勘探,1994,22(6):22−25.

    LUO Jun-wen, YE Dao-min, HUANG Hai-zhi, XIAO Wen-zhao. Heating characteristics of vitrinite in some coals in southwest China[J]. Coal Geol Explor,1994,22(6):22−25.
    [12]
    孙翊博, 王绍清, 舒昆昆, 苏珅, 马薇, 邵瑞. 树皮煤受热物理变化特征研究[J]. 中国煤炭,2017,43(3):93−98. doi: 10.3969/j.issn.1006-530X.2017.03.020

    SUN Yi-bo, WANG Shao-qing, SHU Kun-kun, SU Shen, MA Wei, SHAO Rui. The changes of physical characteristics of bark coal when heating[J]. China Coal,2017,43(3):93−98. doi: 10.3969/j.issn.1006-530X.2017.03.020
    [13]
    王越, 丁华, 武琳琳, 张宇宏, 白向飞, 曲思建. 低温热转化过程中煤中典型壳质组的荧光和Micro-FTIR特征[J]. 燃料化学学报,2021,49(5):598−608.

    WANG Yue, DING Hua, WU Lin-lin, ZHANG Yu-hong, BAI Xiang-fei, QU Si-jian. The fluorescence and Micro-FTIR characteristics of typical liptinite in low temperature thermal conversion[J]. J Fuel Chem Technol,2021,49(5):598−608.
    [14]
    刘涛. 不同变质程度煤的热解特性及其共炭化研究[D]. 合肥: 安徽工业大学, 2013.

    LIU Tao. Study on the pyrolysis and Co-carbonization performance of different rank of coal[D]. Hefei: Anhui University of Technology, 2013.
    [15]
    康西栋, 胡善亭, 潘治贵, 潘银苗, 王凌志. 华北地区煤的显微组分结焦性热台试验[J]. 地球科学—中国地质大学学报,1997,22(2):181−184.

    KANG Xi-dong, HU Shan-ting, PAN Zhi-gui, PAN Yin-miao, WANG Ling-zhi. Heating stage test on the coking properties of macerals of coal[J]. Earth Sci,1997,22(2):181−184.
    [16]
    白向飞, 张宇宏. 中国炼焦商品煤质量现状分析[J]. 煤质技术,2013,28(1):1−3. doi: 10.3969/j.issn.1007-7677.2013.01.001

    BAI Xiang-fei, ZHANG Yu-hong. Analysis on the quality of Chinese commercial coking coals[J]. Coal Qual Technol,2013,28(1):1−3. doi: 10.3969/j.issn.1007-7677.2013.01.001
    [17]
    白向飞, 李文华, 陈文敏, 马伟伟. 我国西部弱还原程度煤分布及煤质特征研究[J]. 煤炭学报,2005,30(4):502−506. doi: 10.3321/j.issn:0253-9993.2005.04.022

    BAI Xiang-fei, LI Wen-hua, CHEN Wen-min, MA Wei-wei. Study on distribution and characteristics of coals with weak reductive degree in west China[J]. J China Coal Soc,2005,30(4):502−506. doi: 10.3321/j.issn:0253-9993.2005.04.022
    [18]
    白向飞, 李文华, 罗陨飞, 陈洪博. 中国西部弱还原性煤的结构特征初步研究[J]. 煤炭转化,2006,29(4):5−8. doi: 10.3969/j.issn.1004-4248.2006.04.002

    BAI Xiang-fei, LI Wen-hua, LUO Yun-fei, CHEN Hong-bo. Preliminary study on structural characteristics of coal with weak reductivity in west China[J]. Coal Convers,2006,29(4):5−8. doi: 10.3969/j.issn.1004-4248.2006.04.002
    [19]
    韩德馨. 中国煤岩学[M]. 徐州: 中国矿业大学出版社, 1996: 196.

    HAN De-xin. China Coal Petrology[M]. Xuzhou: China University of Mining and Technology Press, 1996: 196.
    [20]
    谢克昌. 煤的结构与反应性[M]. 北京: 科学出版社, 2002: 252−262.

    XIE Ke-chang. Coal Structure and Its Reactivity[M]. Beijing: Science Press, 2002: 252−262.
    [21]
    罗陨飞. 煤的大分子结构研究-煤中惰质组结构及煤中氧的赋存形态[D]. 北京: 煤炭科学研究总院, 2002.

    LUO Yun-fei. Study on macromolecular structure of coal-inertinite structure and occurrence of oxygen in coal[D]. Beijing: China Coal Research Institute, 2002.
    [22]
    DAI S, BECHTEL A, EBLE C F, FLORES R M, FRENCH D, GRAHAM I T, HOOD M M, HOWER J C, KORASIDIS V A, MOORE T A, PÜTTMANN W, WEI Q, ZHAO L, O'KEEFE J M K. Recognition of peat depositional environments in coal: A review[J]. Int J Coal Geol,2020,219:103383. doi: 10.1016/j.coal.2019.103383
    [23]
    陈鹏. 中国煤炭性质、分类和利用[M]. 北京: 化学工业出版社, 2007: 33−35.

    CHEN Peng. Nature, Classification and Utilization of Coal in China[M]. Beijing: Chemical Industry Press, 2007: 33−35.
    [24]
    斯塔赫. 斯塔赫煤岩学教程[M]. 北京: 煤炭工业出版社, 1990: 184−201.

    STACH E. Stach’s Textbook of Coal Petrology[M]. Beijing: Coal Industry Press, 1990: 184−201.
    [25]
    TAYLOR G H, TEICHMÜLLER M, DAVIS A, DIESSEL C F K, LITTKE R, ROBERT P. The Organic Petrology[M]. Berlin: Gebruder Borntraeger, 1998: 35−39.
    [26]
    SUAREZ-RUIZ I, CRELLING J C. Applied Coal Petrology: The Role of Petrology in Coal Utilization[M]. Amsterdam: Elsevier Science Ltd, 2008: 44−48.
    [27]
    叶道敏, 肖文钊, 罗俊文, 黄海智. 煤岩学配煤和焦炭强度预测的研究[J]. 煤田地质与勘探,1998,26(S1):5−8.

    YE Dao-min, XIAO Wen-zhao, LUO Jun-wen, HUANG Hai-zhi. Study on blending and coke strength prediction using coal petrology[J]. Coal Geol Explor,1998,26(S1):5−8.
    [28]
    周师庸, 赵俊国. 炼焦煤性质与高炉焦炭质量[M]. 北京: 冶金工业出版社, 2005: 1−8.

    ZHOU Shi-yong, ZHAO Jun-guo. Properties of Coking Coal and Coke Quality of Blast Furnace[M]. Beijing: Metallurgical Industry Press, 2005: 36−55.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (484) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return