Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
LIU Juan, LI Wen-ying, FENG Jie, GAO Xiang. Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1513-1521. doi: 10.1016/S1872-5813(21)60105-6
Citation: LIU Juan, LI Wen-ying, FENG Jie, GAO Xiang. Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1513-1521. doi: 10.1016/S1872-5813(21)60105-6

Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts

doi: 10.1016/S1872-5813(21)60105-6
Funds:  The project was supported by National Natural Science Foundation of China (22038008) and National Key Research and Development Plan Projects of China (2016YFB0600305)
  • Received Date: 2021-02-23
  • Rev Recd Date: 2021-04-30
  • Available Online: 2021-06-03
  • Publish Date: 2021-10-30
  • To obtain type II active phase with higher activity, MoS2-based catalysts were prepared by thermal decomposition of ammonium tetrathiomolybdate. The influence of Ni adding way and decomposition atmosphere on the microstructures of MoS2 slabs, chemical state of surface elements, as well as hydrodesulfurization and hydrodenitrogenation activities were investigated. Results indicated that simultaneous impregnation of Mo and Ni precursors caused in situ deposition of amorphous NiMoS4 over the support surface, which subsequently facilitated the substitution of Mo atoms by Ni atoms at MoS2 edges. Accordingly, these decorated catalysts exhibited higher dispersion of MoS2 slabs with more suitable slab length (3–5 nm) and stacking number (2–4), which attributed to larger numbers of rim and corner active sites exposed at the edges. These active sites were essential in hydrogenation and hydrogenolysis reactions. In comparison with N2 atmosphere, thermal decomposition in H2 atmosphere was more conducive to the substitution of Mo atoms by Ni atoms at MoS2 edges, which provided more active Ni-Mo-S structures for the adsorption, activation and hydrogenolysis of quinoline and dibenzothiophene molecules. The catalyst prepared by thermal decomposition of NiMoS4 in H2 atmosphere showed superior activities in the quinoline hydrodenitrogenation with 23.8% conversion and in the dibenzothiophene hydrodesulfurization with 93.3% conversion, under the conditions of 340 °C, 3 MPa, a weight hourly space velocity of 23.4 h–1, H2/oil volume ratio of 600 and 0.1 g of NMS-H2 catalysts.
  • loading
  • [1]
    刘敏, 陈贵锋, 王永刚, 赵鹏, 曲思建. 白石湖煤液化粗油加氢精制过程硫、氮化合物转化规律[J]. 燃料化学学报,2019,47(7):870−875. doi: 10.3969/j.issn.0253-2409.2019.07.012

    LIU Min, CHEN Gui-feng, WANG Yong-gang, ZHAO Peng, QU Si-jian. Conversion of sulphur and nitrogen compounds in hydrofining process of Baishihu coal liquefaction oil[J]. J Fuel Chem Technol,2019,47(7):870−875. doi: 10.3969/j.issn.0253-2409.2019.07.012
    [2]
    VÁZQUEZ-GARRIDO I, LÓPEZ-BENÍTEZ A, BERHAULT G, GUEVARA-LARA A. Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions[J]. Fuel,2019,236:55−64. doi: 10.1016/j.fuel.2018.08.053
    [3]
    LIU Z, HAN W, HU D, SUN S, HU A, WANG Z, JIA Y, ZHAO X, YANG Q. Effects of Ni-Al2O3 interaction on NiMo/Al2O3 hydrodesulfurization catalysts[J]. J Catal,2020,387:62−72. doi: 10.1016/j.jcat.2020.04.008
    [4]
    EIJSBOUTS S, LI X, JUAN-ALCANIZ J, VAN DEN OETELAAR L C A, BERGWERFF J A, LOOS J, CARLSSON A, VOGT E T C. Electron tomography reveals the active phase-support interaction in sulfidic hydroprocessing catalysts[J]. ACS Catal,2017,7(7):4817−4821. doi: 10.1021/acscatal.7b01201
    [5]
    GUTIÉRREZ O Y, KLIMOVA T. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4, 6-DMDBT[J]. J Catal,2011,281(1):50−62. doi: 10.1016/j.jcat.2011.04.001
    [6]
    GE H, WEN X-D, RAMOS M A, CHIANELLI R R, WANG S, WANG J, QIN Z, LYU Z, LI X. Carbonization of ethylenediamine coimpregnated CoMo/Al2O3 catalysts sulfided by organic sulfiding agent[J]. ACS Catal,2014,4(8):2556−2565. doi: 10.1021/cs500477x
    [7]
    BARA C, LAMIC-HUMBLOT A-F, FONDA E, GAY A-S, TALEB A-L, DEVERS E, DIGNE M, PIRNGRUBER G D, CARRIER X. Surface-dependent sulfidation and orientation of MoS2 slabs on alumina-supported model hydrodesulfurization catalysts[J]. J Catal,2016,344:591−605. doi: 10.1016/j.jcat.2016.10.001
    [8]
    BOUWENS S M A M, VANZON F B M, VANDIJK M P, VANDERKRAAN A M, DEBEER V H J, VANVEEN J A R, KONINGSBERGER D C. On the structural differences between alumina-supported CoMoS type I and alumina-, silica-, and carbon-supported CoMoS type II phases studied by XAFS, MES, and XPS[J]. J Catal,1994,146(2):375−393. doi: 10.1006/jcat.1994.1076
    [9]
    OKAMOTO Y, KATO A, USMAN, RINALDI N, FUJIKAWA T, KOSHIKA H, HIROMITSU I, KUBOTA T. Effect of sulfidation temperature on the intrinsic activity of Co-MoS2 and Co-WS2 hydrodesulfurization catalysts[J]. J Catal,2009,265(2):216−228. doi: 10.1016/j.jcat.2009.05.003
    [10]
    SÁNCHEZ J, MORENO A, MONDRAGÓN F, SMITH K J. Morphological and structural properties of MoS2 and MoS2-amorphous silica-alumina dispersed catalysts for slurry-phase hydroconversion[J]. Energy Fuels,2018,32(6):7066−7077. doi: 10.1021/acs.energyfuels.8b01081
    [11]
    MELLO M D D, BRAGGIO F D A, MAGALHÃES B D C, ZOTIN J L, SILVA M A P D. Effects of phosphorus content on simultaneous ultradeep HDS and HDN reactions over NiMoP/alumina catalysts[J]. Ind Eng Chem Res,2017,56(37):10287−10299. doi: 10.1021/acs.iecr.7b02718
    [12]
    BADOGA S, DALAI A K, ADJAYE J, HU Y. Insights into individual and combined effects of phosphorus and EDTA on performance of NiMo/MesoAl2O3 catalyst for hydrotreating of heavy gas oil[J]. Fuel Process Technol,2017,159:232−246. doi: 10.1016/j.fuproc.2017.01.034
    [13]
    王广建, 赵强, 陈国良, 王建爽, 石林. 柠檬酸引入方式对CoMo/TiO2-Al2O3催化剂加氢脱硫性能的影响[J]. 工业催化,2019,27(7):54−60. doi: 10.3969/j.issn.1008-1143.2019.07.010

    WANG Guang-jian, ZHAO Qiang, CHEN Guo-liang, WANG Jian-shuang, SHI Lin. Effect of citric acid introduction methods on hydrodesulfurization performance of CoMo/TiO2-Al2O3 catalysts[J]. Ind Catal,2019,27(7):54−60. doi: 10.3969/j.issn.1008-1143.2019.07.010
    [14]
    SOLNICKOVA L. Nano-sized carbon-supported molybdenum disulphide particles for hydrodesulphurization[D]. Vancouver: The University of British Columbia, 2016.
    [15]
    GANIYU S A, ALHOOSHANI K, ALI S A. Single-pot synthesis of Ti-SBA-15-NiMo hydrodesulfurization catalysts: Role of calcination temperature on dispersion and activity[J]. Appl Catal B: Environ,2017,203:428−441. doi: 10.1016/j.apcatb.2016.10.052
    [16]
    VARAKIN A N, MOZHAEV A V, PIMERZIN A A, NIKULSHIN P A. Comparable investigation of unsupported MoS2 hydrodesulfurization catalysts prepared by different techniques: Advantages of support leaching method[J]. Appl Catal B: Environ,2018,238:498−508. doi: 10.1016/j.apcatb.2018.04.003
    [17]
    NIEFIND F, BENSCH W, DENG M, KIENLE L, CRUZ-REYES J, GRANADOS J M D V. Co-promoted MoS2 for hydrodesulfurization: New preparation method of MoS2 at room temperature and observation of massive differences of the selectivity depending on the activation atmosphere[J]. Appl Catal A: Gen,2015,497:72−84. doi: 10.1016/j.apcata.2015.03.003
    [18]
    SUN K, GUO H, JIAO F, CHAI Y, LI Y, LIU B, MINTOVA S, LIU C. Design of an intercalated Nano-MoS2 hydrophobic catalyst with high rim sites to improve the hydrogenation selectivity in hydrodesulfurization reaction[J]. Appl Catal B: Environ,2021,286:119907. doi: 10.1016/j.apcatb.2021.119907
    [19]
    LIU B, LIU L, CHAI Y, ZHAO J, LI Y, LIU D, LIU Y, LIU C. Effect of sulfiding conditions on the hydrodesulfurization performance of the ex-situ presulfided CoMoS/γ-Al2O3 catalysts[J]. Fuel,2018,234:1144−1153. doi: 10.1016/j.fuel.2018.08.001
    [20]
    LAI W, CHEN Z, ZHU J, YANG L, ZHENG J, YI X, FANG W. NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts[J]. Nanoscale,2016,8(6):3823−3833. doi: 10.1039/C5NR08841K
    [21]
    PELARDY F, SANTOS A S, DAUDIN A, DEVERS E, BELIN T, BRUNET S. Sensitivity of supported MoS2-based catalysts to carbon monoxide for selective HDS of FCC gasoline: Effect of nickel or cobalt as promoter[J]. Appl Catal B: Environ,2017,206:24−34. doi: 10.1016/j.apcatb.2016.12.057
    [22]
    BREMMER G M, HAANDEL L, HENSEN E J M, FRENKEN J W M, KOOYMAN P J. The effect of oxidation and resulfidation on (Ni/Co)MoS2 hydrodesulfurisation catalysts[J]. Appl Catal B: Environ,2019,243:145−150. doi: 10.1016/j.apcatb.2018.10.014
    [23]
    RANGARAJAN S, MAVRIKAKIS M. On the preferred active sites of promoted MoS2 for hydrodesulfurization with minimal organonitrogen inhibition[J]. ACS Catal,2017,7(1):501−509. doi: 10.1021/acscatal.6b02735
    [24]
    BERHAULT G, MEHTA A, PAVEL A C, YANG J, RENDON L, YÁCAMAN M J, ARAIZA L C, MOLLER A D, CHIANELLI R R. The role of structural carbon in transition metal sulfides hydrotreating catalysts[J]. J Catal,2001,498:9−19.
    [25]
    LIU J, LI W-Y, FENG J, GAO X, LUO Z-Y. Promotional effect of TiO2 on quinoline hydrodenitrogenation activity over Pt/γ-Al2O3 catalysts[J]. Chem Eng Sci,2019,207:1085−1095. doi: 10.1016/j.ces.2019.07.040
    [26]
    LIU J, LI W-Y, FENG J, GAO X. Effects of Fe species on promoting the dibenzothiophene hydrodesulfurization over the Pt/γ-Al2O3 catalysts[J]. Catal Today,2020,. doi: 10.1016/j.cattod.2020.07.035
    [27]
    DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: The "Rim-Edge" model[J]. J Catal,1994,149(2):414−427. doi: 10.1006/jcat.1994.1308
    [28]
    KASZTELAN S, TOULHOAT H, GRIMBLOT J, BONNELLE J P. A geometrical model of the active phase of hydrotreating catalysts[J]. Appl Catal,1984,13(1):127−159. doi: 10.1016/S0166-9834(00)83333-3
    [29]
    XU J, GUO Y, HUANG T, FAN Y. Hexamethonium bromide-assisted synthesis of CoMo/graphene catalysts for selective hydrodesulfurization[J]. Appl Catal B: Environ,2019,244:385−395. doi: 10.1016/j.apcatb.2018.11.065
    [30]
    ZHOU W, ZHANG Q, ZHOU Y, WEI Q, DU L, DING S, JIANG S, ZHANG Y. Effects of Ga- and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels[J]. Catal Today,2018,305:171−181. doi: 10.1016/j.cattod.2017.07.006
    [31]
    JIAO J, FU J, WEI Y, ZHAO Z, DUAN A, XU C, LI J, SONG H, ZHENG P, WANG X, YANG Y, LIU Y. Al-modified dendritic mesoporous silica nanospheres-supported NiMo catalysts for the hydrodesulfurization of dibenzothiophene: Efficient accessibility of active sites and suitable metal-support interaction[J]. J Catal,2017,356:269−282. doi: 10.1016/j.jcat.2017.10.003
    [32]
    HU C, CREASER D, FOULADVAND S, GRÖNBECK H, SKOGLUNDH M. Methyl crotonate hydrogenation over Pt: Effects of support and metal dispersion[J]. Appl Catal A: Gen,2016,511:106−116. doi: 10.1016/j.apcata.2015.12.003
    [33]
    ALBERSBERGER S, SHI H, WAGENHOFER M, HAN J, GUTIÉRREZ O Y, LERCHER J A. On the enhanced catalytic activity of acid-treated, trimetallic Ni-Mo-W sulfides for quinoline hydrodenitrogenation[J]. J Catal,2019,380:332−342. doi: 10.1016/j.jcat.2019.09.034
    [34]
    NGUYEN M-T, TAYAKOUT-FAYOLLE M, CHAINET F, PIRNGRUBER G D, GEANTET C. Use of kinetic modeling for investigating support acidity effects of NiMo sulfide catalysts on quinoline hydrodenitrogenation[J]. Appl Catal A: Gen,2017,530:132−144. doi: 10.1016/j.apcata.2016.11.015
    [35]
    WANG H, LIU S, SMITH K J. Understanding selectivity changes during hydrodesulfurization of dibenzothiophene on Mo2C/carbon catalysts[J]. J Catal,2019,369:427−439. doi: 10.1016/j.jcat.2018.11.035
    [36]
    RYDBERG H, DION M, JACOBSON N, SCHRÖDER E, HYLDGAARD P, SIMAK S, LANGRETH D, LUNDQVIST B. Van der waals density functional for layered structures[J]. Phys Rev Lett,2003,91(12):126402. doi: 10.1103/PhysRevLett.91.126402
    [37]
    BYSKOV L, NØRSKOV J, CLAUSEN B, TOPSØE H. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts[J]. J Catal,1999,187(1):109−122. doi: 10.1006/jcat.1999.2598
    [38]
    ZHENG P, LI T, CHI K, XIAO C, FAN J, WANG X, DUAN A. DFT insights into the formation of sulfur vacancies over corner/edge site of Co/Ni-promoted MoS2 and WS2 under the hydrodesulfurization conditions[J]. Appl Catal B: Environ,2019,257:117937. doi: 10.1016/j.apcatb.2019.117937
    [39]
    GUTIÉRREZ O, HRABAR A, HEIN J, YU Y, HAN J, LERCHER J. Ring opening of 1, 2, 3, 4-tetrahydroquinoline and decahydroquinoline on MoS2/γ-Al2O3 and Ni-MoS2/γ-Al2O3[J]. J Catal,2012,295:155−168. doi: 10.1016/j.jcat.2012.08.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (272) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return