Volume 49 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
CUI Wei-yi, WANG Xi-yue, TAN Nai-di. Effect of thermal treatment temperature on catalytic performance of Pt/TiO2 nanobelt composite for HCHO oxidation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1701-1708. doi: 10.1016/S1872-5813(21)60113-5
Citation: CUI Wei-yi, WANG Xi-yue, TAN Nai-di. Effect of thermal treatment temperature on catalytic performance of Pt/TiO2 nanobelt composite for HCHO oxidation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1701-1708. doi: 10.1016/S1872-5813(21)60113-5

Effect of thermal treatment temperature on catalytic performance of Pt/TiO2 nanobelt composite for HCHO oxidation

doi: 10.1016/S1872-5813(21)60113-5
Funds:  The project was supported by the National Natural Science Foundation of China (51805207) and 2021 Science and Technology Research and Planning Project of Education Department of Jilin Province (JJKH20210235KJ)
  • Received Date: 2021-03-26
  • Rev Recd Date: 2021-05-06
  • Available Online: 2021-06-12
  • Publish Date: 2021-11-30
  • TiO2 nanobelts were prepared by hydrothermal synthesis and acid treatment, then calcination at different temperatures. And subsequently Pt nanoparticles were deposited on the TiO2 nanobelts. Pt/TiO2 catalytic properties were investigated in the oxidation of formaldehyde. These catalysts were characterized by various techniques and the characterization results showed that the applied thermal treatment temperature greatly influenced the phase composition and surface structure of TiO2 nanobelts, as well as the number of oxygen vacancies and hydroxyl groups on the surface. The Pt/TiO2 nanobelts thermally treated at 600 °C had more oxygen vacancies, which were conducive to the activation of adsorbed oxygen, formed more Ti-(OH)x-Pt species, and showed higher catalytic activity. At 25 °C and relative humidity of 55%, the conversion of formaldehyde reached 91.6%.
  • loading
  • [1]
    TANG X J, BAI Y, DUONG A, SMITH M T, LI L Y, ZHANG L P. Formaldehyde in China: Production, consumption, exposure levels, and health effects[J]. Environ Int,2009,35(8):1210−1224. doi: 10.1016/j.envint.2009.06.002
    [2]
    CHI C C, CHEN W D, GUO M, WENG M L, YAN G, SHEN X Y. Law and features of TVOC and formaldehyde pollution in urban indoor air[J]. Atmos Environ,2016,132(5):85−90.
    [3]
    JHON Q T, SEBASTIEN Y, BELLAT J P, GIRAUDON J M, LAMONIER J F. Formaldehyde: Catalytic oxidation as a promising soft way of elimination[J]. ChemSusChem,2013,6:578−592. doi: 10.1002/cssc.201200809
    [4]
    HUANG H B, XU Y, FENG Q Y, LEUNG D Y C. Low temperature catalytic oxidation of volatile organic compounds: A review[J]. Catal Sci Technol,2015,5(2):2649−2669.
    [5]
    NIE L H, YU J G, JARONIEC M, TAO F. Room-temperature catalytic oxidation of formaldehyde on catalysts[J]. Catal Sci Technol,2016,6(11):3649−3669. doi: 10.1039/C6CY00062B
    [6]
    拜冰阳, 乔琦, 李俊华, 郝吉明. 甲醛催化氧化催化剂的研究进展[J]. 催化学报,2016,37(1):102−122. doi: 10.1016/S1872-2067(15)61007-5

    BAI Bing-yang, QIAO Qi, LI Jun-hua, HAO Ji-ming. Progress in research on catalysts for catalytic oxidation of formaldehyde[J]. Chin J Catal,2016,37(1):102−122. doi: 10.1016/S1872-2067(15)61007-5
    [7]
    GUO J H, LIN C X, JIANG C J, ZHANG P Y. Review on noble metal-based catalysts for formaldehyde oxidation at room temperature[J]. Appl Surf Sci,2019,475:237−255. doi: 10.1016/j.apsusc.2018.12.238
    [8]
    HUANG H B, LEUNG D Y C. Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature[J]. J Catal,2011,280:60−67. doi: 10.1016/j.jcat.2011.03.003
    [9]
    ZHANG C B, LIU F D, ZHAI Y P, ARIGA H, YI N, LIU Y C, ASAKURA K, FLYTZANI-STEPHANOPOULOS M, HE H. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures[J]. Angew Chem Int Ed,2012,51(38):9628−9632. doi: 10.1002/anie.201202034
    [10]
    QI L F, CHENG B, YU J G, HO W K. High-surface area mesoporous Pt/TiO2 hollow chains for efficient formaldehyde decomposition at ambient temperature[J]. J Hazard Mater,2016,301:522−530. doi: 10.1016/j.jhazmat.2015.09.026
    [11]
    CHEN H Y, RUI Z B, JI H B. Monolith-like TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions[J]. Ind Eng Chem Res,2014,53:7629−7636. doi: 10.1021/ie5004009
    [12]
    NIE L H, YU J G, FU J Wl. Complete decomposition of formaldehyde at room temperature over a platinum-decorated hierarchically porous electrospun titania nanofiber mat[J]. ChemCatChem,2014,6:1983−1989. doi: 10.1002/cctc.201301105
    [13]
    NIE L H, ZHOU P, YU J G, JARONIE Mietek. Deactivation and regeneration of Pt/TiO2 nanosheet-type catalysts with exposed (001) facets for room temperature oxidation of formaldehyde[J]. J Mol Catal A: Chem,2014,390:7−13. doi: 10.1016/j.molcata.2014.02.033
    [14]
    CUI W Y, XUE D, YUAN X L, ZHENG B, JIA M J, ZHANG W X. Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions[J]. Appl Surf Sci,2017,411:105−112. doi: 10.1016/j.apsusc.2017.03.169
    [15]
    SU Y, JI K M, XUN J Y, ZHANG K, LIU P, ZHAO L. Catalytic oxidation of low concentration formaldehyde over Pt/TiO2 catalyst[J]. Chin J Chem Eng,2021,29:190−195. doi: 10.1016/j.cjche.2020.04.024
    [16]
    WANG Y, LI Z, CAO Y, LI F, ZHAO W, LIN X Q, YANG J B. Fabrication of novel Ag-TiO2 nanobelts as a photoanode for enhanced photovoltage performance in dye sensitized solar cells[J]. J Alloy Compd,2016,677:294−301. doi: 10.1016/j.jallcom.2016.03.266
    [17]
    LIN J J, SHEN J X, WANG T L, WANG R J, LIU H, CUI J J, ZHOU W J. Enhancement of photocatalytic properties of TiO2 nanobelts through surface-coarsening and surface nanoheterostructure construction[J]. Mater Sci Eng B,2011,176:921−925. doi: 10.1016/j.mseb.2011.05.018
    [18]
    JIANG Z, YANG Y, SHANGGUAN W, JIANG Z. Influence of support and metal precursor on the state and CO catalytic oxidation activity of platinum supported on TiO2[J]. J Phys Chem C,2012,116:19396−19404. doi: 10.1021/jp3061009
    [19]
    SARKAR D, CHATTOPADHYAY K K. Branch density-controlled synthesis of hierarchical TiO2 nanobelt and tunable three-step electron transfer for enhanced photocatalytic property[J]. ACS Appl Mater Interfaces,2014,6:10044−10059. doi: 10.1021/am502379q
    [20]
    XU F Y, LE Y, CHENG B, JIANG C X. Effect of calcination temperature on formaldehyde oxidation performance of Pt/TiO2 nanofiber composite at room temperature[J]. Appl Surf Sci,2017,426:333−341. doi: 10.1016/j.apsusc.2017.07.096
    [21]
    QI L F, HO W, WANG J L, ZHANG P Y, YU J G. Enhanced catalytic activity of hierarchically macro-/mesoporous Pt/TiO2 toward room-temperature decomposition of formaldehyde[J]. Catal Sci Technol,2015,5:2366−2377. doi: 10.1039/C4CY01712A
    [22]
    YAN Z X, XU Z H,YU J G, JARONIEC M. Highly active mesoporous ferrihydrite supported Pt catalyst for formaldehyde removal at room temperature[J]. Environ Sci Technol,2015,49:6637−6644.
    [23]
    ZENG L, SONG W L, LI M H, ZENG D W, XIE C S. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature[J]. Appl Catal B: Environ,2014,147:490−498.
    [24]
    WANG G M, WANG H Y, LING Y C, TANG Y C, YANG X Y, FITZMORRIS R C, WANG C C, ZHANG J Z, LI Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting[J]. Nano Lett,2011,11:3026−3033. doi: 10.1021/nl201766h
    [25]
    NIE L H, YU J G, LI X Y, CHENG B, LIU G, JARONIEC M. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde[J]. Environ Sci Technol,2013,47:2777−2783. doi: 10.1021/es3045949
    [26]
    LIU L Q, ZHOU F, WANG L G, QI X J, SHI F, DENG Y Q. Low-temperature CO oxidation over supported Pt, Pd catalysts: Particular role of FeOx support for oxygen supply during reactions[J]. J Catal,2010,274:1−10. doi: 10.1016/j.jcat.2010.05.022
    [27]
    PENG J X, WANG S D. Correlation between microstructure and performance of Pt/TiO2 catalysts for formaldehyde catalytic oxidation at ambient temperature: effects of hydrogen pretreatment[J]. J Phys Chem C,2007,111:9897−9904.
    [28]
    HE M, JI J, LIU B Y, HUANG H B. Reduced TiO2 with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature[J]. Appl Surf Sci,2019,473:934−942.
    [29]
    AHMAD W, PARK E, LEE H, KIM J Y, KIM B C, JURNG J, OH Y. Defective domain control of TiO2 support in Pt/TiO2 for room temperature formaldehyde (HCHO) remediation[J]. Appl Surf Sci,2021,538:147504. doi: 10.1016/j.apsusc.2020.147504
    [30]
    LI Y B, WANG C Y, ZHANG C B, HE H. Formaldehyde oxidation on Pd/TiO2 catalysts at room temperature: The effects of surface oxygen vacancies[J]. Top Catal,2020,63:1−7. doi: 10.1007/s11244-020-01254-7
    [31]
    ZHANG C B, HE H, TANAKA K. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature[J]. Appl Catal B: Environ,2006,65:37−43. doi: 10.1016/j.apcatb.2005.12.010
    [32]
    PENG J X, WANG S D. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures[J]. Appl Catal B: Environ,2007,73:282−291. doi: 10.1016/j.apcatb.2006.12.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (330) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return