Volume 49 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHANG Jie-han, KANG Guo-jun, YANG Hang, LIU Zhou-en, YU Jian, GAO Shi-qiu. Co-pyrolysis kinetics and pyrolysis product distribution of various tannery wastes[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1638-1647. doi: 10.1016/S1872-5813(21)60133-0
Citation: ZHANG Jie-han, KANG Guo-jun, YANG Hang, LIU Zhou-en, YU Jian, GAO Shi-qiu. Co-pyrolysis kinetics and pyrolysis product distribution of various tannery wastes[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1638-1647. doi: 10.1016/S1872-5813(21)60133-0

Co-pyrolysis kinetics and pyrolysis product distribution of various tannery wastes

doi: 10.1016/S1872-5813(21)60133-0
Funds:  The project was supported by the National Key R & D Program of China (2019YFE0197200), the Guangxi Major Projects of Science and Technology (GXMPSTAA 18118013)
  • Received Date: 2021-04-25
  • Rev Recd Date: 2021-06-23
  • Available Online: 2021-08-10
  • Publish Date: 2021-11-30
  • Tanning sludge, chrome tanned buffing dust and chrome shavings were selected as experimental materials. The non-isothermal distributed activation energy model (DAEM) was used to study the pyrolysis kinetic parameters. Effects of particle size and temperature on distribution of co-pyrolysis products of various tanning wastes were investigated in a fixed-bed pyrolysis reactor, which provided a new approach for comprehensive thermal treatment of various tannery wastes. The results show that the total activation energy required for the co-pyrolysis decreases and then increases in the range of conversion rate of 0.1 to 0.8. The tar yield decreases with raising particle size, while the yields of gas and char increase. With increasing pyrolysis temperature, the tar yield increases rapidly to a peak value of 17% at 600℃, and then decreases, correspondingly the char yield decreases while the gas yield increases. At 600 ℃ and the particle size of 1.6–2.5 mm, specific surface area of the char is larger, and the light fractions in tar is higher. Thus, co-pyrolysis is conducive to clean treatment of the tannery wastes.
  • loading
  • [1]
    LI Y, GUO R, LU W, ZHU D. Research progress on resource utilization of leather solid waste[J]. J Leather Sci Eng,2019,1(1):1−17. doi: 10.1186/s42825-019-0004-x
    [2]
    ZENG J, GOU M, TANG Y, LI G, SUN Z, KIDA K. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community[J]. Bioresour Technol,2016,218:859−866. doi: 10.1016/j.biortech.2016.07.051
    [3]
    李晓星, 陈杰, 贾继章. 制革污泥处理及资源化利用研究进展[J]. 西部皮革,2015,37(18):39−42. doi: 10.3969/j.issn.1671-1602.2015.18.013

    LI Xiao-xing, CHEN Jie, JIA Ji-zhang. Research progress in treatment and resource utilization of tannery sludge[J]. West Leather,2015,37(18):39−42. doi: 10.3969/j.issn.1671-1602.2015.18.013
    [4]
    MISHRA D, RHEE Y H. Microbial leaching of metals from solid industrial wastes[J]. J Microbiol,2014,52(1):1−7. doi: 10.1007/s12275-014-3532-3
    [5]
    葛淑华, 王全杰, 刁屾, 王雪, 袁艳, 栾俊. 皮革固体废弃物研究进展及应用[J]. 皮革与化工,2019,36(2):37−42. doi: 10.3969/j.issn.1674-0939.2019.02.007

    GE Shu-hua, WANG Quan-jie, DIAO Shen, WANG Xue, YUAN Yan, LUAN Jun. Research progress and application of solid leather waste[J]. Leather Chem,2019,36(2):37−42. doi: 10.3969/j.issn.1674-0939.2019.02.007
    [6]
    YANG H, LIU B, CHEN Y, CHEN W, YANG Q, CHEN H. Application of biomass pyrolytic polygeneration technology using retort reactors[J]. Bioresour Technol,2016,200:64−71. doi: 10.1016/j.biortech.2015.09.107
    [7]
    DEVI P, SAROHA A K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresour Technol,2014,162:308−315. doi: 10.1016/j.biortech.2014.03.093
    [8]
    CABALLERO J A, FONT R, ESPERANZA M M. Kinetics of the thermal decomposition of tannery waste[J]. J Anal Appl Pyrolysis,1998,47(2):165−181. doi: 10.1016/S0165-2370(98)00081-3
    [9]
    WANG C, BI H, LIN Q, JIANG X, JIANG C. Co-pyrolysis of sewage sludge and rice husk by TG-FTIR-MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics[J]. Renewable Energy,2020,160:1048−1066. doi: 10.1016/j.renene.2020.07.046
    [10]
    XU X, ZHAO B, SUN M, CHEN X, ZHANG M, LI H, XU S. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis[J]. Waste Manag,2017,62:91−100. doi: 10.1016/j.wasman.2017.02.012
    [11]
    FRIŠTÁK V, PIPÍŠKA M, SOJA G. Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer[J]. J Clean Prod,2018,172:1772−1778. doi: 10.1016/j.jclepro.2017.12.015
    [12]
    印安冬, 邓文义, 马璟宸, 苏雅欣. 污泥热解炭脱除NO特性[J]. 化工学报,2018,69(6):2655−2663.

    YIN An-dong, DENG Wen-yi, MA Jing-chen, SU Ya-xin. Properties on NO removal over pyrolyzed sludge carbon[J]. CIESC J,2018,69(6):2655−2663.
    [13]
    SYED-HASSAN S S A, WANG Y, HU S, SU S, XIANG J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations[J]. Renewable Sustainable Energ Rev,2017,80:888−913. doi: 10.1016/j.rser.2017.05.262
    [14]
    PUCHANA-ROSERO M J, ADEBAYO M A, LIMA E C, MACHADO F M, THUE P S, VAGHETTI J C, UMPIERRES C S, GUTTERRES M. Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes[J]. Colloids Surf A: Physicochem Eng Aspects,2016,504:105−115.
    [15]
    钱晓峰, 王肖杭, 陆鹏, 王东科, 何石鱼, 黄群星. 污泥、皮革和煤的协同热处置[J]. 环境工程学报,2017,11(12):6437−6442. doi: 10.12030/j.cjee.201702037

    QIAN Xiao-feng, WANG Xiao-hang, LU Peng, WANG Dong-ke, HE Shi-yu, HUANG Qun-xing. Co-thermal-disposal of sewage sludge, leather scraps and coal[J]. J Environ Sci (China),2017,11(12):6437−6442. doi: 10.12030/j.cjee.201702037
    [16]
    王俊丽, 赵强, 郝晓刚, 黄伟, 赵建国. 低阶煤与生物质混合低温共热解特性分析及对产物组成的影响[J]. 燃料化学学报,2021,49(1):37−46.

    WANG Jun-li, ZHAO Qiang, HAO Xiao-gang, HUANG Wei, ZHAO Jian-guo. Low temperature co-pyrolysis of low rank coal with biomass and its influence on pyrolysis-derived products[J]. J Fuel Chem Technol,2021,49(1):37−46.
    [17]
    CHEN D, LI Y, CEN K, LUO M, LI H, LU B. Pyrolysis polygeneration of poplar wood: Effect of heating rate and pyrolysis temperature[J]. Bioresour Technol,2016,218:780−788. doi: 10.1016/j.biortech.2016.07.049
    [18]
    王兴栋, 张斌, 余广炜, 童科宪, 林景江, 汪印. 不同粒径污泥热解制备生物炭及其特性分析[J]. 化工学报,2016,67(11):4808−4816.

    WANG Xing-dong, ZHANG Bin, YU Guang-wei, TONG Ke-xian, LIN Jing-jiang, WANAG Yin. Preparation of biochar with different particle sized sewage sludge and its characteristics[J]. CIESC J,2016,67(11):4808−4816.
    [19]
    MIURA K, MAKI T. A simple method for estimating f(E) and k0(E) in the distributed activation energy model[J]. Energy Fuels,1998,12(5):864. doi: 10.1021/ef970212q
    [20]
    FU Y, GUO Y, ZHANG K. Effect of three different catalysts (KCl, CaO, and Fe2O3) on the reactivity and mechanism of low-rank coal pyrolysis[J]. Energy Fuels,2016,30(3):2428−2433. doi: 10.1021/acs.energyfuels.5b02720
    [21]
    LU Q, ZHANG N, YANG Q, LI Y, CAO Q, LIU S, LING J, XIE X, XU Y, WANG L, YUAN S. Influence of calcium promoter on catalytic pyrolysis characteristics of iron-loaded brown coal in a fixed bed reactor[J]. J Energy Inst,2020,93(2):695−710. doi: 10.1016/j.joei.2019.05.011
    [22]
    KLUSKA J, OCHNIO M, KARDAS D, HEDA L. The influence of temperature on the physicochemical properties of products of pyrolysis of leather-tannery waste[J]. Waste Manag,2019,88:248−256. doi: 10.1016/j.wasman.2019.03.046
    [23]
    WANG D, CHEN Z, LI C, WANG D, LI Y, YANG H, LIU Z, YU J, GAO S. High-quality tar production from coal in an integrated reactor: Rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed[J]. Fuel,2021,285:119156. doi: 10.1016/j.fuel.2020.119156
    [24]
    畅志兵, 初茉, 张超, 王文涓, 曲洋. 颗粒粒径对油页岩热解产油率的影响[J]. 燃料化学学报,2015,43(6):663−668. doi: 10.3969/j.issn.0253-2409.2015.06.004

    CHANG Zhi-bing, CHU Mo, ZHANG Chao, WANG Wen-juan, QU Yang. Influence of particle size on oil yield from pyrolysis of oil shale[J]. J Fuel Chem Technol,2015,43(6):663−668. doi: 10.3969/j.issn.0253-2409.2015.06.004
    [25]
    MOŠKO J, POHOŘELÝ M, SKOBLIA S, BEŇO Z, JEREMIÁŠ M. Detailed analysis of sewage sludge pyrolysis gas: Effect of pyrolysis temperature[J]. Energies,2020,13(16):4087. doi: 10.3390/en13164087
    [26]
    SHEN Y. Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass pyrolysis or gasification[J]. Renewable Sustainable Energy Rev,2015,43:281−295. doi: 10.1016/j.rser.2014.11.061
    [27]
    HE X, LIU Z, NIU W, YANG L, ZHOU T, QIN D, NIU Z, YUAN Q. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues[J]. Energy,2018,143:746−756. doi: 10.1016/j.energy.2017.11.062
    [28]
    XIAO R, YANG W. Influence of temperature on organic structure of biomass pyrolysis products[J]. Renewable Energy,2013,50:136−141. doi: 10.1016/j.renene.2012.06.028
    [29]
    SADRAMELI S M. Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review[J]. Fuel,2015,140:102−115. doi: 10.1016/j.fuel.2014.09.034
    [30]
    KARACA C, SOZEN S, ORHON D, OKUTAN H. High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery[J]. Waste Manag,2018,78:217−226. doi: 10.1016/j.wasman.2018.05.034
    [31]
    FONTS I, GEA G, AZUARA M, ÁBREGO J, ARAUZO J. Sewage sludge pyrolysis for liquid production: A review[J]. Renewable Sustainable Energ Rev,2012,16(5):2781−2805. doi: 10.1016/j.rser.2012.02.070
    [32]
    CAO X, HARRIS W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresour Technol,2010,101(14):5222−5228. doi: 10.1016/j.biortech.2010.02.052
    [33]
    TÔRRES FILHO A, LANGE L C, DE MELO G C B, PRAES G E. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process[J]. Waste Manage,2016,48:448−456. doi: 10.1016/j.wasman.2015.11.046
    [34]
    CHUN Y N, JI D W, YOSHIKAWA K. Pyrolysis and gasification characterization of sewage sludge for high quality gas and char production[J]. J Mech Sci Technol,2013,27(1):263−272. doi: 10.1007/s12206-012-1202-0
    [35]
    GEETHAKARTHI A, PHANIKUMAR B R. Characterization of tannery sludge activated carbon and its utilization in the removal of azo reactive dye[J]. Environ Sci Pollut Res Int,2012,19(3):656−665. doi: 10.1007/s11356-011-0608-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (729) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return