Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
XIE Rui-lun, ZHANG Xia, TIAN Yu-jiao, LEI Zhao, CAO En-de. Nitrogen-doped porous carbon supported nickel nanoparticles as catalyst for catalytic hydroconversion of high-temperature coal tar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1402-1411. doi: 10.1016/S1872-5813(21)60156-1
Citation: XIE Rui-lun, ZHANG Xia, TIAN Yu-jiao, LEI Zhao, CAO En-de. Nitrogen-doped porous carbon supported nickel nanoparticles as catalyst for catalytic hydroconversion of high-temperature coal tar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1402-1411. doi: 10.1016/S1872-5813(21)60156-1

Nitrogen-doped porous carbon supported nickel nanoparticles as catalyst for catalytic hydroconversion of high-temperature coal tar

doi: 10.1016/S1872-5813(21)60156-1
Funds:  The project was supported by Natural Science Foundation of Anhui Province (1708085QB33) and Key Program for International S&T Cooperation Projects of China ( 2017YFE0124300).
More Information
  • Author Bio:

    rlxie@ahut.edu.cn

  • Corresponding author: E-mail:tyjiao@163.com
  • Received Date: 2021-03-01
  • Rev Recd Date: 2021-04-20
  • Available Online: 2021-09-08
  • Publish Date: 2021-10-30
  • A novel and highly active nitrogen-doped porous carbon-supported nickel catalyst Ni@N-PC was successfully developed by a thermolysis of nickel-based zeolitic imidazolate frameworks growing on both sides of graphitic carbon nitride and used for catalyzing hydroconversion of isopropanol soluble portion from ultrasonic extraction of high-temperature coal tar (ISPHTCT). The active nickel nanoparticles were mainly encapsulated on the top of carbon nanotubes and partially dispersed on the surface of carbon nanosheets. Naphthalen-1-ol was used as a model compound to investigate the catalytic hydroconversion activity under different reaction conditions and reveal the mechanism for catalytic hydroconversion. The ISPHTCT and catalytic hydroconversion products of ISPHTCT (ISPCHCP) were analyzed with gas chromatograph/mass spectrometer. The results show that 70% of naphthalen-1-ol was converted at 160 °C and completely converted at 200 °C for 120 min, and the ISPHTCT was greatly upgraded. A total of 180 organic compounds including 33 nitrogen-containing organic compounds, 11 sulfur-containing organic compounds and 39 oxygenates were identified in ISPHTCT, while no obvious nitrogen-containing organic compounds, sulfur-containing organic compounds and oxygenates were detected in ISPCHCP, indicating the excellent performance of Ni@N-PC for heteroatom removal. All the alkenes, cyclenes and alkynes were saturated and the majority of arenes were converted to cyclanes by catalytic hydroconversion over Ni@N-PC, which exhibited high catalytic hydrogenation activity.
  • loading
  • [1]
    FAN X Y, LI D, DAN Y, DONG H, GUO Q, ZHENG H A, LI W H. Kinetic parameter calculation and trickle bed reactor simulation based on pilot-scale hydrodesulfurization test of high-temperature coal tar[J]. ACS Omega,2020,5(22):12923−12936. doi: 10.1021/acsomega.0c00683
    [2]
    XU X, LI A, ZHANG T, ZHANG L Z, XU D M, GAO J, WANG Y L. Efficient extraction of phenol from low-temperature coal tar model oil via imidazolium-based ionic liquid and mechanism analysis[J]. J Mol Liq,2020,306:1−6.
    [3]
    ZHANG L Z, XU D M, GAO J, ZHOU S X, ZHAO L W, ZHANG Z S. Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids[J]. Fuel,2017,194:27−35. doi: 10.1016/j.fuel.2016.12.095
    [4]
    SUN Z H, LI D, MA H X, TIAN P P, LI X K, LI W H, ZHU Y H. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Process Technol,2015,138:413−418. doi: 10.1016/j.fuproc.2015.05.008
    [5]
    SUN Z H, WU Y, ZHENG M Y, LI W H. Investigation on asphaltene compositions and structures during hydroprocessing of low-temperature coal tar at different reaction temperatures on Ni-Mo-W/γ-Al2O3 catalysts[J]. React Kinet Mech Catal,2020,129(1):443−456. doi: 10.1007/s11144-019-01715-5
    [6]
    LI D, LIU X, SUN Z H, TIAN P P, LI W H. Characterization of toluene insolubles from low-Temperature coal tar[J]. Energy Technol,2014,2(2):548−555.
    [7]
    HU S H, XUE M W, CHEN H, SHEN J Y. The effect of surface acidic and basic properties on the hydrogenation of aromatic rings over the supported nickel catalysts[J]. Chem Eng J,2010,162(1):371−379. doi: 10.1016/j.cej.2010.05.019
    [8]
    ZHANG Y Y, WEI X Y, LV J H, ZONG Z M. Catalytic hydroconversion of a high-temperature coal tar over two attapulgite powder-supported nickel catalysts[J]. Energy Fuels,2020,34(2):1288−1296. doi: 10.1021/acs.energyfuels.9b03055
    [9]
    CHU R Z, WANG J, MENG X L, YU S, ZHANG G F, WANG M L, LI X, WU G G, BAI L. Molecular simulation of hydrodesulfurization of coal tar using Pd/ZSM‐5/γ‐Al2O3 catalyst[J]. Asia-Pac J Chem Eng,2019,14(3):1−11.
    [10]
    PINILLA J L, GARCÍA A B, PHILIPPOT K, LARA P, GARCÍA-SUÁREZ E J, MILLAN M. Carbon-supported Pd nanoparticles as catalysts for anthracene hydrogenation[J]. Fuel,2014,116:729−735. doi: 10.1016/j.fuel.2013.08.067
    [11]
    HE T, WANG Y X, MIAO P J, LI J Q, WU J H, FAGN Y M. Hydrogenation of naphthalene over noble metal supported on mesoporous zeolite in the absence and presence of sulfur[J]. Fuel,2013,106:365−371. doi: 10.1016/j.fuel.2012.12.025
    [12]
    YAZU K, SHARMA A. Hydrodesulfurization of coal tar pitch using Pt/Al2O3 and Pd/Al2O3 catalysts under mild conditions[J]. Carbon Res Convers,2019,2(3):213−216. doi: 10.1016/j.crcon.2019.11.002
    [13]
    CUI X, WU T, GAO J P, TANG W, YANG F L, ZHU B A, WANG Z. Mechanism for catalytic cracking of coal tar over fresh and reduced LaNi1-xFexO3 perovskite[J]. Fuel,2021,288:1−10.
    [14]
    WEI B Y, YANG H, HU H Q, WANG D C, JIN L J. Enhanced production of light tar from integrated process of in-situ catalytic upgrading lignite tar and methane dry reforming over Ni/mesoporous Y[J]. Fuel,2020,279:1−12.
    [15]
    CUI W G, LI W H, GAO R, MA H X, LI D, NIU M L, LEI X. Hydroprocessing of low-temperature coal tar for the production of clean fuel over fluorinated NiW/Al2O3-SiO2 catalyst[J]. Energy Fuels,2017,31(4):3768−3783. doi: 10.1021/acs.energyfuels.6b03390
    [16]
    QI S C, ZHANG L, WEI X Y, HAYASHI J I, ZONG Z M, GUO L L. Deep hydrogenation of coal tar over a Ni/ZSM-5 catalyst[J]. RSC Adv,2014,4(33):17105−17109. doi: 10.1039/c3ra47701k
    [17]
    ZHANG H Y, CHEN G W, BAI L, CHANG N, WANG Y G. Selective hydrogenation of aromatics in coal-derived liquids over novel NiW and NiMo carbide catalysts[J]. Fuel,2019,244:359−365. doi: 10.1016/j.fuel.2019.02.015
    [18]
    TONG R L, WANG Y G, ZHANG X, ZHANG H Y, DAI J Z, LIN X C, XU D P. Effect of phosphorus modification on the catalytic properties of NiW/γ-Al2O3 in the hydrogenation of aromatics from coal tar[J]. J Fuel Chem Technol,2015,43(12):1461−1469. doi: 10.1016/S1872-5813(16)30003-2
    [19]
    KAN T, WANG H Y, HE H X, LI C S, ZHANG S J. Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels[J]. Fuel,2011,90(11):3404−3409. doi: 10.1016/j.fuel.2011.06.012
    [20]
    XU D, XIONG Y Q, YE J D, SU Y H, DONG Q, ZHANG S P. Performances of syngas production and deposited coke regulation during co-gasification of biomass and plastic wastes over Ni/γ-Al2O3 catalyst: Role of biomass to plastic ratio in feedstock[J]. Chem Eng J,2020,392:1−13.
    [21]
    FAN R Y, HU Z, CHEN C, ZHU X G, ZHANG H M, ZHANG Y X, ZHAO H J, WANG G Z. Highly dispersed nickel anchored on a N-doped carbon molecular sieve derived from metal-organic frameworks for efficient hydrodeoxygenation in the aqueous phase[J]. Chem Commun,2020,56(49):6696−6699. doi: 10.1039/D0CC02620D
    [22]
    ZHANG S P, YIN H X, WANG J X, ZHU S G, XIONG Y Q. Catalytic cracking of biomass tar using Ni nanoparticles embedded carbon nanofiber/porous carbon catalysts[J]. Energy,2021,216:1−10.
    [23]
    JABBOUR K, HASSAN N E, DAVIDSON A, MASSIANI P, CASALE S. Characterizations and performances of Ni/diatomite catalysts for dry reforming of methane[J]. Chem Eng J,2015,264:351−358. doi: 10.1016/j.cej.2014.11.109
    [24]
    LIU L J, LOU H, CHEN M. Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over Ni/CNTs and bimetallic Cu-Ni/CNTs catalysts[J]. Int Hydrogen Energy,2016,41(33):14721−14731. doi: 10.1016/j.ijhydene.2016.05.188
    [25]
    TANG F Y, WANG L Q, WALLE M D, MUSTAPHA A, LIU Y N. An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural[J]. J Catal,2020,383:172−180. doi: 10.1016/j.jcat.2020.01.019
    [26]
    HERRERA C, BARRIENTOS L, ROSENKRANZ A, SEPULVEDA C, GARCÍA-FIERRO J L, LAGUNA-BERCERO M A, ESCALONA N. Tuning amphiphilic properties of Ni/Carbon nanotubes functionalized catalysts and their effect as emulsion stabilizer for biomass-derived furfural upgrading[J]. Fuel,2020,276:1−13.
    [27]
    TERMVIDCHAKORN C, FAUNGNAWAKIJ K, KUBOON S, BUTBUREE T, SANO N, CHARINPANITKUL T. A novel catalyst of Ni hybridized with single-walled carbon nanohorns for converting methyl levulinate to γ-valerolactone[J]. Appl Surf Sci,2019,474:161−168. doi: 10.1016/j.apsusc.2018.04.054
    [28]
    SUN Y F, LI C S, ZHANG A M. Preparation of Ni/CNTs catalyst with high reducibility and their superior catalytic performance in benzene hydrogenation[J]. Appl Catal A: Gen,2016,522:180−187. doi: 10.1016/j.apcata.2016.05.011
    [29]
    QU Y M, XU G D, YANG J H, ZHANG Z S. Reduction of aromatic nitro compounds over Ni nanoparticles confined in CNTs[J]. Appl Catal A: Gen,2020,590:1−6.
    [30]
    WANG R W, YAN T T, HAN L P, CHEN G R, LI H R, ZHANG J P, SHI L Y, ZHANG D S. Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction[J]. J Mater Chem A,2018,6(14):5752−5761. doi: 10.1039/C8TA00439K
    [31]
    LI M S, WANG X D, LI S R, WANG S P, MA X B. Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds[J]. Int J Hydrogen Energy,2010,35(13):6699−6708. doi: 10.1016/j.ijhydene.2010.04.105
    [32]
    XIE R L, ZONG Z M, LIU F J, WANG Y G, YAN H L, WEI Z H, MAYYAS M, WEI X Y. Nitrogen-doped porous carbon foams prepared from mesophase pitch through graphitic carbon nitride nanosheet templates[J]. RSC Adv,2015,5(57):45718−45724. doi: 10.1039/C4RA14513E
    [33]
    MA T Y, DAI S, JARONIEC M, QIAN S Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts[J]. Angew Chem Int Ed,2014,53(24):7281−7285.
    [34]
    WANG F, FENG T, JIN X J, ZHOU Y L, XU Y J, GAO Y H, LI H S, LEI J F. Atomic Co/Ni active sites assisted MOF-derived rich nitrogen-doped carbon hollow nanocages for enhanced lithium storage[J]. Chem Eng J, 2021, 420: 127583.
    [35]
    LIU Y, LI Q Y, GUO X, KONG X D, KE J W, CHI M F, LI Q X, GENG Z G, ZENG J. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction[J]. Adv Mater,2020,32(24):1907690. doi: 10.1002/adma.201907690
    [36]
    YANG Z, WEI X Y, ZHANG M, ZONG Z M. Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A[J]. Fuel Process Technol,2018,177:345−352. doi: 10.1016/j.fuproc.2018.04.017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (164) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return