Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
LIU Xiao-ling, MA Cai-lian, ZHAO Wen-tao, ZHANG Juan, CHEN Jian-gang. Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1504-1512. doi: 10.1016/S1872-5813(21)60159-7
Citation: LIU Xiao-ling, MA Cai-lian, ZHAO Wen-tao, ZHANG Juan, CHEN Jian-gang. Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1504-1512. doi: 10.1016/S1872-5813(21)60159-7

Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis

doi: 10.1016/S1872-5813(21)60159-7
Funds:  The project was supported by the National Natural Science Foundation of China (22072175, 21673272) and Beijing Sanju Environmental Protection & New Materials Co., Ltd (SJHT-18038)
More Information
  • The effects of K, Ru or La promoters on the structure, surface area, crystal phase, and catalytic behavior during FT synthesis of carburized and uncarburized fused Fe catalysts were studied by XRD, XPS, TPD, N2-physisorption and catalytic reaction evaluation techniques. Addition of K improved selectivity of C5+ products for both the carburized and uncarburized catalysts. Addition of Ru suppressed catalytic activity of the carburized catalyst, but had little influence on the uncarburized one. Addition of La led to the encapsulation of the iron carbide, which consequently severely inhibited the carburization and decreased the activity. While Ru and La promote the formation of light components due to their ability to promote hydrogen adsorption. The performance of the reaction in the experiment indicated that the U-K catalyst had the best product distribution, in which the methane selectivity was 4.04%, and the C5+ selectivity was 75.84%.
  • loading
  • [1]
    BAO J, YANG G, OKADA C. H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas[J]. Appl Catal A: Gen,2011,394(1/2):195−200. doi: 10.1016/j.apcata.2010.12.041
    [2]
    LI S, KRISHNAMOORTHY S, LI A. Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties[J]. J Catal,2002,206(2):202−217. doi: 10.1006/jcat.2001.3506
    [3]
    WU P, SUN J, ABBAS M. Hydrophobic SiO2 supported Fe-Ni bimetallic catalyst for the production of high-calorie synthetic natural gas[J]. Appl Catal A: Gen,2020,590:111302.
    [4]
    ANDERSON J R. Catalysis : Science and Technology[M]. Berlin: Anderson, 1981.
    [5]
    POUR A N, SHAHRI S M K, BOZORGZADEH H R. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2008,348(2):201−208. doi: 10.1016/j.apcata.2008.06.045
    [6]
    WANG L, WU B, LI Y. Effects of Ru and Cu promoters on Fischer-Tropsch synthesis over Fe-based catalysts[J]. Chin J Catal,2011,32(3):495−501.
    [7]
    ZHANG J, ABBAS M, CHEN J. The evolution of Fe phases of a fused iron catalyst during reduction and Fischer-Tropsch synthesis[J]. Catal Sci Technol,2017,7(16):3626−3636. doi: 10.1039/C7CY01001J
    [8]
    ZHAO L, LIU G, LI C. Effect of La2O3 on a precipitated iron catalyst for Fischer-Tropsch synthesis[J]. Chin J Catal,2009,30(7):637−642. doi: 10.1016/S1872-2067(08)60117-5
    [9]
    LUQUE R, OSA A R D L, CAMPELO J M. Design and development of catalysts for biomass-to-liquid-Fischer-Tropsch (BTL-FT) processes for biofuels production[J]. Energy Environ Sci,2012,5(1):5186−5202. doi: 10.1039/C1EE02238E
    [10]
    YU X, ZHANG J, WANG X. Fischer-Tropsch synthesis over methy 1 modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J]. Appl Catal B: Environ,2018,232(1):420−428.
    [11]
    KUIVILA C S, BUTT J B, STAIR P C. Characterization of surface species on iron synthesis catalysts by X-ray photoelectron spectroscopy[J]. Appl Surf Sci,2016,32(1/2):99−121.
    [12]
    ZHAO Z, LU W, ZHU H. Tuning the Fischer-Tropsch reaction over CoxMnyLa/AC catalysts toward alcohols: Effects of La promotion[J]. J Catal,2018,361:156−167. doi: 10.1016/j.jcat.2018.02.008
    [13]
    NIE C, ZHANG H, MA H. Effects of Ce addition on Fe-Cu catalyst for Fischer-Tropsch synthesis[J]. Catal Lett,2019,149(5):1375−1382. doi: 10.1007/s10562-019-02700-2
    [14]
    WU H, YANG Y, SUO H. Effects of ZrO2 promoter on physic-chemical properties and activity of Co/TiO2 -SiO2 Fischer-Tropsch catalysts[J]. J Mol Catal A: Chem,2015,396:108−119. doi: 10.1016/j.molcata.2014.09.024
    [15]
    AL-DOSSARY M, FIERRO J L G, SPIVEY J J. Cu promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas[J]. Ind Eng Chem Res,2015,54(3):911−921. doi: 10.1021/ie504473a
    [16]
    DING M, YANG Y, WU B. Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer–Tropsch synthesis[J]. J Mol Catal A: Chem,2009,303(1/2):65−71. doi: 10.1016/j.molcata.2008.12.016
    [17]
    MORALES F, DEGROOT F, GIJZEMAN O. Mn promotion effects in Co/TiO Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS[J]. J Catal,2005,230(2):301−308. doi: 10.1016/j.jcat.2004.11.047
    [18]
    YANG Y, XIANG H W, XU Y. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2004,266(2):181−194. doi: 10.1016/j.apcata.2004.02.018
    [19]
    TIAN Z, WANG C, YUE J. Effect of a potassium promoter on the Fischer-Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon[J]. Catal Sci Technol,2019,9(11):2728−2741. doi: 10.1039/C9CY00403C
    [20]
    SHI Z, YANG H, GAO P. Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons[J]. Chin J Catal,2018,39(8):1294−1302. doi: 10.1016/S1872-2067(18)63086-4
    [21]
    XUE Y, DUAN S, CHEN G. Effect of annealing atmosphere on Fischer-Tropsch synthesis performance of Fe/Fe foam structured catalyst[J]. Fuel,2020,262:116570. doi: 10.1016/j.fuel.2019.116570
    [22]
    WANG W, DING M, MA L. Fe2O3 nanoparticles encapsulated in TiO2 nanotubes for Fischer-Tropsch synthesis: The confinement effect of nanotubes on the catalytic performance[J]. Fuel,2016,164:347−351. doi: 10.1016/j.fuel.2015.09.089
    [23]
    XU B, FAN Y, ZHANG Y. Pore diffusion simulation model of bimodal catalyst for Fischer-Tropsch synthesis[J]. AIChE J,2005,51(7):2068−2076. doi: 10.1002/aic.10469
    [24]
    LU F, CHEN X, LEI Z. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis[J]. Appl Catal B: Environ,2021,281:119521. doi: 10.1016/j.apcatb.2020.119521
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (184) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return