Volume 49 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
DU Zhi-ming, LEI Zhi-ping, YU Wen-hao, YAN Jing-chong, LI Zhan-ku, SHUI Heng-fu, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang. Growth of high performance coal tar-based carbon film and its application in Joule heating[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1599-1608. doi: 10.1016/S1872-5813(21)60162-7
Citation: DU Zhi-ming, LEI Zhi-ping, YU Wen-hao, YAN Jing-chong, LI Zhan-ku, SHUI Heng-fu, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang. Growth of high performance coal tar-based carbon film and its application in Joule heating[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1599-1608. doi: 10.1016/S1872-5813(21)60162-7

Growth of high performance coal tar-based carbon film and its application in Joule heating

doi: 10.1016/S1872-5813(21)60162-7
Funds:  The project was supported by the Natural Scientific Foundation of China (21878001, 22078002, 21776001, 21875001, 21978002, 21808002, 22008001, and U1710114)
More Information
  • Corresponding author: Tel: +86 5552311552, E-mail: zplei@ahut.edu.cnshhf@ahut.edu.cn
  • Received Date: 2021-06-24
  • Rev Recd Date: 2021-07-25
  • Available Online: 2021-09-26
  • Publish Date: 2021-11-30
  • Conductive carbon film has a wide range of application prospects, especially in the fields of electric heating devices, energy storage devices, and solar cells. Coal tar is an ideal precursor for preparing carbon film. In order to improve the performance of coal tar-based carbon film, it is necessary to study the influence of tar composition on the structure and performance of carbon film. In this paper, a carbon film is prepared using aromatic compounds, heteroatom compounds and tar as carbon sources. It is found that the carrier concentration of aromatic hydrocarbon-based carbon films is higher than 1022 cm3, but the mobility of the carrier is lower than 1 cm2/Vs. The resistivity and sheet resistance of the aromatic hydrocarbon-based carbon film are lower than that of the coal tar-based carbon film. Naphthalene-based carbon film has the best electrical and thermal properties. The maximum heating temperature of naphthalene-based carbon film at 30 V exceeds 300 °C. The thickness of the carbon film has a decisive influence on the sheet resistance of the carbon film. The performance of the heteroatom compound-based carbon film is significantly lower than that of aromatic compound-based film.
  • loading
  • [1]
    FAN Z J, LIU Y, YAN J, NING G Q, WANG Q, WEI T, ZHI L J, WEI F. Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors[J]. Adv Energy Mater,2012,2(4):419−424. doi: 10.1002/aenm.201100654
    [2]
    HE X J, LI X J, MA H, HAN J F, ZHANG H, YU C, XIAO N, QIU J S. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J Power Sources,2017,340:183−191. doi: 10.1016/j.jpowsour.2016.11.073
    [3]
    WANG Y W, XIAO N, WANG Z Y, LI H J, YU M L, TANG Y C, HAO M Y, LIU C, ZHOU Y, QIU J S. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chem Eng J,2018,342:52−60. doi: 10.1016/j.cej.2018.01.098
    [4]
    HAN Y J, KIM J D, YEO J S, AN J C, HONG I P, NAKABAYASHI K J, MIYAWAKI J, JUNG J D, YOON S H. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch[J]. Carbon,2015,94:432−438. doi: 10.1016/j.carbon.2015.07.030
    [5]
    ZHANG J J, LIU Q R, HE H, SHI F, HUANG G X, XING B L, JIA J B, ZHANG C X. Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B[J]. Carbon,2019,152:284−294. doi: 10.1016/j.carbon.2019.06.034
    [6]
    DONG F, LIU C, WU M J, GUO J N, LI K X, QIAO J L. Hierarchical porous carbon derived from coal tar pitch containing discrete Co-Nx-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-Air batteries[J]. ACS Sustainable Chem Eng,2019,7(9):8587−8596. doi: 10.1021/acssuschemeng.9b00373
    [7]
    ASHCHEULOV P, TAYLOR A, VLČKOVÁ ŽIVCOVÁ Z, HUBÍK P, HONOLKA J, VONDRÁČEK M, REMZOVÁ M, KOPEČEK J, KLIMŠA L, LORINČIK J, DAVYDOVA M, REMEŠ Z, KOHOUT M, BELTRAN A M, MORTET V. Low temperature synthesis of transparent conductive boron doped diamond films for optoelectronic applications: Role of hydrogen on the electrical properties[J]. Appl Mater Tody,2020,19:100633. doi: 10.1016/j.apmt.2020.100633
    [8]
    HU P, MENG D H, REN G H, YAN R X, PENG X S. Nitrogen-doped mesoporous carbon thin film for binder-free supercapacitor[J]. Appl Mater Tody,2016,5:1−8. doi: 10.1016/j.apmt.2016.08.001
    [9]
    SEO H K, KIM T S, PARK C, XU W, BAEK K, BAE S H, AHN J H, KIM K, CHOI H C, LEE T W. Value-added synthesis of graphene: recycling industrial carbon waste into electrodes for high-performance electronic devices[J]. Sci Rep,2015,5:16710. doi: 10.1038/srep16710
    [10]
    KELLER B D, FERRALIS N, GROSSMAN J C. Rethinking coal: thin films of solution processed natural carbon nanoparticles for electronic devices[J]. Nano Lett,2016,16(5):2951−2957. doi: 10.1021/acs.nanolett.5b04735
    [11]
    MORRIS O P, ZANG X, GREGG A, KELLER B, GETACHEW B, INGERSOLL S, ELSEN H A, DISKO M M, FERRALIS N, GROSSMAN J C. Natural carbon by-products for transparent heaters: the case of steam-cracker tar[J]. Adv Mater,2019,31(35):e1900331. doi: 10.1002/adma.201900331
    [12]
    LEI Z P, DU Z M, YU W H, YAN J C, LI Z K, SHUI H F, REN S B, WANG Z C, KONG Y, KANG S G. Facile synthesis of carbon film with high carrier concentration using coal tar and the application in joule heating[J]. ACS Appl Electron Mater,2021,3(7):3271−3277. doi: 10.1021/acsaelm.1c00434
    [13]
    MA R, HUAN Q, WU L, YAN J, GUO W, ZHANG Y Y, WANG S, BAO L, LIU Y, DU S, PANTELIDES S T, GAO H J. Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene[J]. Nano Lett,2017,17(9):5291−5296. doi: 10.1021/acs.nanolett.7b01624
    [14]
    YIN Y, CHENG Z, WANG L, JIN K, WANG W. Graphene, a material for high temperature devices-intrinsic carrier density, carrier drift velocity, and lattice energy[J]. Sci Rep,2014,4:5758.
    [15]
    WEI D, LIU Y, WANG Y, ZHANG H, HUANG L, YU G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Lett,2009,9(5):1752−1758. doi: 10.1021/nl803279t
    [16]
    KANG T J, KIM T, SEO S M, PARK Y J, KIM Y H. Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating[J]. Carbon,2011,49(4):1087−1093. doi: 10.1016/j.carbon.2010.11.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (313) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return