Volume 49 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
MU Shi-fang, SHANG Ru-jing, CHEN Jian-gang, ZHANG Jian-li. Pretreating Co/SiO2 to generate highly active Fischer-Tropsch synthesis catalyst with low CH4 selectivity[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1592-1598. doi: 10.1016/S1872-5813(21)60163-9
Citation: MU Shi-fang, SHANG Ru-jing, CHEN Jian-gang, ZHANG Jian-li. Pretreating Co/SiO2 to generate highly active Fischer-Tropsch synthesis catalyst with low CH4 selectivity[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1592-1598. doi: 10.1016/S1872-5813(21)60163-9

Pretreating Co/SiO2 to generate highly active Fischer-Tropsch synthesis catalyst with low CH4 selectivity

doi: 10.1016/S1872-5813(21)60163-9
Funds:  The project was supported by the Foundation of State Key Laboratory of Coal Conversion (J20-21-612), the Initiation Foundation of Henan Polytechnic University (B2019-54) and Henan Key Laboratory of Coal Green Conversion (CGCF201910).
More Information
  • Corresponding author: E-mail: mushifang@126.com
  • Received Date: 2021-05-21
  • Rev Recd Date: 2021-06-17
  • Available Online: 2021-09-20
  • Publish Date: 2021-11-30
  • The effects of pretreatment methods (DR, R, ROR) on the microstructure of Co/SiO2 catalysts and the activity for Fischer-Tropsch synthesis (FTS) were investigated. The pretreated catalysts were characterized by TEM, HRTEM, XRD, XPS, H2-TPD, TG and TPR. The results showed that after the pretreatments, specific morphological of the Co species changed, forming new Co active surface species. The Co particles redispersed and the Co species was facile to be re-reduced. The Co/SiO2 catalysts pretreated by different method showed different catalytic performance. The catalyst treated by the reduction-passivation had higher activity and C5+ selectivity for FTS.
  • loading
  • [1]
    KAI J, ALI CAN K, IVAN L, NORBERT P, MATHAIS B, PATRICIA C, GONZOLA P. Design of cobalt Fischer-Tropsch catalysts for the combined production of liquid fuels and olefin chemicals from hydrogen-rich syngas[J]. ACS Catal,2021,11(1):4784−4798.
    [2]
    CHEN W, LIN T J, DAI Y Y, AN Y L, YU F, ZHONG L S, LI S G, SUN Y H. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts[J]. Catal Today,2018,311(1):8−22.
    [3]
    SUN J, YANG G H, PENG X B, KANG J C, WU J H, LIU G B, TSUBAKI N. Beyond Cars: Fischer-Tropsch synthesis for non-auto-motive applications[J]. ChemCatChem,2019,11(2):1412−1424.
    [4]
    GUO S P, WANG Q, WANG M, MA Z Y, WANG J G, HOU B, CHEN C B, XIA M, JIA L T, LI D B. A comprehensive insight into the role of barium in catalytic performance of Co/Al2O3 catalyst for Fischer-Tropsch synthesis[J]. Fuel,2019,256(1):1−11.
    [5]
    ZHOU W, CHENG K, KANG J C, ZHOU C, SUBRAMANIAN V, ZHANG Q H, WANG Y. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [6]
    BUKUR D B, NOWICKI L, MANNE R K, LANG X S. Activation studies with a precipitated iron catalyst for Fischer-Tropsch synthesis: II. Reaction studies[J]. J Catal,1995,155(2):366−375. doi: 10.1006/jcat.1995.1218
    [7]
    NIEMELA M K, BACKMAN L, KRAUSE A O, VAARA T. The activity of the Co/SiO2 catalyst in relation to pretreatment[J]. Appl Catal A: Gen,1997,156(2):319−334. doi: 10.1016/S0926-860X(97)00044-6
    [8]
    HOU X N, QING S J, LIU Y J, XI H J, WANG T F, WANG X, GAO Z X. Reshaping CuO on silica to generate a highly active Cu/ SiO2 catalyst[J]. Catal Sci Technol,2016,16(2):6311−6319.
    [9]
    TANG LG, YAMAGUCHI D, LEITA B, SAGE V, BURKE V, Chiang V. The effects of oxidation-reduction treatment on the structure and activity of cobalt-based catalysts[J]. Catal Commun,2015,59(2):166−169.
    [10]
    JNIOUI A, EDDOUASSE M, AMARIGLIO A, EHRHARDT J J, LAMBERT J, ALNOT M, AMARIGLIO H. Oxidizing pretreatments as a means of activating cobalt in CO2 methanation; parallel kinetic probing and surface analysis[J]. Surf Sci,1985,162(1/3):368−374. doi: 10.1016/0039-6028(85)90922-7
    [11]
    JNIOUI A, EDDOUASSE M, AMARIGLIO A, EHRHARDT J J, AMARIGLIO H. Catalytic activation of cobalt induced by oxidizing treatments in the methanation of carbon dioxide[J]. J Catal,1987,106(1):144−165. doi: 10.1016/0021-9517(87)90220-X
    [12]
    DWYER D J, SOMORJAI G A. Hydrogenation of CO and CO2 over iron foils: Correlations of rate, product distribution, and surface composition[J]. J Catal,1978,52(2):291−301. doi: 10.1016/0021-9517(78)90143-4
    [13]
    FROHLICH G, KESTEL U, LOJEWSKA J, MEYER G, BORGMANN D, DZIEMBAJ R, WEDLER G. Activation and deactivation of cobalt catalysts in the hydrogenation of carbon dioxide[J]. Appl Catal A: Gen,1996,134(1):1−19. doi: 10.1016/0926-860X(95)00207-3
    [14]
    SEXTON B A, SOMORJAI G A. The hydrogenation of CO and CO2 over polycrystalline rhodium: Correlation of surface composition, kinetics and product distributions[J]. J Catal,1977,46(2):167−189. doi: 10.1016/0021-9517(77)90198-1
    [15]
    KOBYLINSK T P, KIBBY C L, PANNELL R B, EDDY E L. Activated cobalt catalyst and synthesis gas conversion using same: US, 4 605 679[P]. 1986- 08-12.
    [16]
    KOBYLINSK T P, KIBBY C L, PANNELL R B, EDDY E L. Synthesis gas conversion using ROR-activated catalyst: US, 4605676[P]. 1986-08-12.
    [17]
    JIA L T, FANG K G, CHEN J G, SUN Y H. Influence of reduction oxidation reduction treatment on the structure and catalytic performance of Co/ZrO2 for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2010,38(6):710−715.
    [18]
    JACOBS G, SARKAR A, JI Y Y, LUO M S, DOZIER A K, DAVIS B. Fischer-Tropsch Synthesis: Assessment of the ripening of cobalt clusters and mixing between Co and Ru promoter via oxidation-reduction-cycles over lower Co-loaded Ru-Co/Al2O3 catalysts[J]. Ind Eng Chem Res,2008,47(3):672−680. doi: 10.1021/ie0709988
    [19]
    CAI J, JIANG F, LIU X H. Exploring pretreatment effects in Co/SiO2 Fischer-Tropsch catalysts: Different oxidizing gases applied to oxidation-reduction process[J]. Appl Catal B: Environ,2017,210(1):1−13.
    [20]
    BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms[J]. J Am Chem Soc,1951,73(1):373−380. doi: 10.1021/ja01145a126
    [21]
    POTOCZNA-PETRU D, JABLONSKI J M, OKAL J. Influence of oxidation-reduction treatment on the microstructure of Co/SiO2 catalyst[J]. Appl Catal A: Gen,1998,175(1/2):113−120. doi: 10.1016/S0926-860X(98)00214-2
    [22]
    SCHANKE D, VADA S, BLEKKAN A E, HILMAN A M, HOFF A, HOLMEN A. Study of Pt-promoted cobalt CO hydrogenation catalysts[J]. J Catal,1995,156(3):85−95.
    [23]
    SUN S, TSUBAKI N, FUJIMOTO K. The reaction performances and characterization of Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from mixed cobalt salts[J]. Appl Catal A: Gen,2000,202(1):121−131. doi: 10.1016/S0926-860X(00)00455-5
    [24]
    JONGSOMJIT B, PANPRANOT J, GOODWIN J G. Co-support compound formation in alumina-supported cobalt catalysts[J]. J Catal,2001,204(1):98−109. doi: 10.1006/jcat.2001.3387
    [25]
    VAN DE LOOSDRECHT J, BARRADAS S, CARICATO E A, NGWENYA N G, NKWANYANA P S, RAWAT M A S, SIGBELEA B H, VAN BERGE P J, VISIAGE J L. Calcination of Co-based Fischer-Tropsch synthesis catalysts[J]. Top Catal,2003,26(1):121−127.
    [26]
    VAN BERGE P J, VAN DE LOOSDRECHT J, VISAGIE J L. Cobalt catalyst: WO, 0139882 [P]. 1999-12-1.
    [27]
    MATSUZAKI T, TAKEUCHI K, HANAOKA T, SUGI Y. Hydrogenation of carbon monoxide over highly dispersed cobalt catalysts derived from cobalt(II) acetate[J]. Catal Today,1996,28(3):251−259. doi: 10.1016/0920-5861(95)00245-6
    [28]
    MATSUZAKI T, TAKEUCHI K, HANAOKA T, ARAWAKA H, SUGI Y. Effect of transition metals on oxygenates formation from syngas over Co/SiO2[J]. Appl Catal A: Gen,1993,105(2):159−184. doi: 10.1016/0926-860X(93)80246-M
    [29]
    KOGELBAUER A, GOODWIN J G. Ruthenium promotion of Co/Al2O3 Fischer-Tropsch catalysts[J]. J Catal,1996,160(1):125−133. doi: 10.1006/jcat.1996.0130
    [30]
    KHODAKOV A Y, CONSTANT A G, BECHARA R, ZHOLOBENKO Y L. Pore size effects in Fischer-Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal,2002,206(2):230−241. doi: 10.1006/jcat.2001.3496
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (318) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return