Volume 51 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
CHEN Xue, WANG Xue-feng, WANG Xun, DENG Cun-bao, CAO Min-min. Effect of highly dispersed Co3O4 on the catalytic performance of LaCoO3 perovskite in the combustion of lean methane[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 367-375. doi: 10.1016/S1872-5813(22)60051-3
Citation: CHEN Xue, WANG Xue-feng, WANG Xun, DENG Cun-bao, CAO Min-min. Effect of highly dispersed Co3O4 on the catalytic performance of LaCoO3 perovskite in the combustion of lean methane[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 367-375. doi: 10.1016/S1872-5813(22)60051-3

Effect of highly dispersed Co3O4 on the catalytic performance of LaCoO3 perovskite in the combustion of lean methane

doi: 10.1016/S1872-5813(22)60051-3
Funds:  The project was supported by the NSF Joint Foundation Program (U1810206) and the NSF Facial Program (51774172)
  • Received Date: 2022-04-23
  • Accepted Date: 2022-06-21
  • Rev Recd Date: 2022-06-10
  • Available Online: 2022-07-19
  • Publish Date: 2023-03-15
  • In this work, a series of nano LaCoO3 perovskite catalysts were effectively synthesized by a sol-gel method through modulating the La/Co molar ratio. These catalysts were characterized by ICP, XRD, N2 sorption, H2-TPR, O2-TPD, and XPS, and their catalytic performance in the lean methane combustion were then investigated. The results indicate that highly dispersed Co3O4 nanoparticles on the LaCoO3 perovskite catalysts are beneficial to the activation of CH4 at a low temperature, while the La-Co-perovskite bulk phase can provide a large amount of lattice oxygen, which can enhance the reaction rate of methane combustion and the catalytic stability at a high temperature. Through altering the La/Co molar ratio, the dispersion of Co3O4 nanoparticles in the La-Co-perovskite catalyst can be effectively modulated, to achieve the concurrence of low-temperature activity and high-temperature stability in the lean methane combustion. In particular, the La0.9CoO3 perovskite catalyst with a La/Co molar ratio of 0.9 exhibits excellent performance in lean methane combustion, with a light-off temperature of 382 ℃ at a space velocity of 30000 mL/(gcat·h), the light-off temperature of methane is 382 ℃, and the methane conversion rate is still maintained above 95% after 72 h of stable operation, indicating that the highly dispersed Co3O4 nanoparticles were beneficial to the low-temperature activation of CH4, and the lanthanum-cobalt-perovskite bulk phase in the catalyst could provide a large amount of lattice oxygen, which promotes the catalytic combustion rate of CH4 and the high-temperature stability of the catalyst under high-temperature conditions. By modulating the lanthanum-cobalt ratio, the dispersion state of Co3O4 nanoparticles in the catalyst can be effectively modulated, and then the effective unification of low-temperature activity and high-temperature stability of the catalyst can be achieved, which guides the future development of low-cost, high-activity and high-stability catalysts for methane catalytic combustion.
  • loading
  • [1]
    ZHANG B, CHEN G Q. Methane emissions in China 2007[J]. Renewable Energy,2014,30:886−902. doi: 10.1016/j.rser.2013.11.033
    [2]
    PFEFFERLE L D, PFEFFERLE W C. Catalysis in combustion[J]. Catal Rev,1987,29(2/3):219−267. doi: 10.1080/01614948708078071
    [3]
    ANIL B, JACQUELINE M G, OLIVIA L, MICHAEL B. Low-temperature activity and PdO-PdOx transition in methane combustion by a PdO-PdOx/γ-Al2O3 catalyst[J]. Catalysts,2018,8(7):266−284. doi: 10.3390/catal8070266
    [4]
    CASTELLAZZI P, GROPPI G, FORZATTI P, ALEXANDRE B, MARÉCOT P, DUPREZ D. Role of Pd loading and dispersion on redox behaviour and CH4 combustion activity of Al2O3 supported catalysts[J]. Catal Today,2010,155(1/2):18−26. doi: 10.1016/j.cattod.2009.02.029
    [5]
    WANG J H, CHEN H, HU Z C, YAO M F, LI Y D. A review on the Pd-based three-way catalyst[J]. Catal Rev,2015,57(1):79−144. doi: 10.1080/01614940.2014.977059
    [6]
    TIAN M, WANG X, LIU X, WANG A, ZHANG T. Fe-substituted Ba-hexaaluminates oxygen carrier for carbon dioxide capture by chemical looping combustion of methane[J]. AIChE J,2016,62(3):792−801. doi: 10.1002/aic.15135
    [7]
    ZHENG J, YU J, JIE C, XIAO T, M O JONES, HAO Z, EDWARDS PP. Catalytic combustion of methane over mixed oxides derived from Co-Mg/Al ternary hydrotalcites[J]. Fuel Process Technol,2010,91(1):97−102. doi: 10.1016/j.fuproc.2009.08.023
    [8]
    CHEN Z, WANG S, LIU W, GAO X, GAO D, WANG M, WANG S. Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion[J]. Appl Catal A: Gen,2016,525:94−102. doi: 10.1016/j.apcata.2016.07.009
    [9]
    IABLOKOV V, BARBOSA R, POLLEFEYT G, VAN D. I, CHENAKIN S, KRUSE N. Catalytic CO oxidation over well-defined cobalt oxide nanoparticles: Size-reactivity correlation[J]. ACS Catal,2015,5(10):5714−5718. doi: 10.1021/acscatal.5b01452
    [10]
    PAREDES J R, DÍAZ E, DÍEZ F V, ORDONEZ S. Combustion of methane in lean mixtures over bulk transition-metal oxides: Evaluation of the activity and self-deactivation[J]. Energy Fuels,2008,23(1):86−93.
    [11]
    GUO G, LIAN K, WANG L, GU, F, HAN D, WANG Z. High specific surface area LaMO3 (M = Co, Mn) hollow spheres: synthesis, characterization and catalytic properties in methane combustion[J]. RSC Adv,2014,4(102):699−707.
    [12]
    GAO Z, WANG R. Catalytic activity for methane combustion of the perovskite-type La1−xSrxCoO3−δ oxide prepared by the urea decomposition method[J]. Appl Catal B: Environ,2010,98(3/4):147−53. doi: 10.1016/j.apcatb.2010.05.023
    [13]
    LI B, YANG Q, PENG Y, CHEN J, DENG L, WANG D, HONG X, LI J. Enhanced low-temperature activity of LaMnO3 for toluene oxidation: The effect of treatment with an acidic KMnO4[J]. Chem Eng J,2019,366:92−99. doi: 10.1016/j.cej.2019.01.139
    [14]
    SI W, WANG Y, SHEN Z, HU F, LIN J. A facile method for in situ preparation of the MnO2/LaMnO3 catalyst for the removal of toluene[J]. Environ Sci Technol,2016,50(8):4572−4578. doi: 10.1021/acs.est.5b06255
    [15]
    NIE L, WANG J, TAN Q. In-situ preparation of macro/mesoporous NiO/LaNiO3 pervoskite composite with enhanced methane combustion performance[J]. Catal Commun,2017,97:1−4. doi: 10.1016/j.catcom.2017.04.010
    [16]
    JYA B, HL A, BO H A, LJ A, YONG X A, DL A. Acidic H2O2 treatment of LaCoO3 towards highly dispersed Co3O4 nanoparticles with excellent catalytic performance for C3H8 combustion[J]. Catal Commun,2020,135:105830.
    [17]
    LUO Y J, WANG K C, ZUO J C, QIAN Q R, XU Y X, LIU X P, XUE H, CHEN Q H. Selective corrosion of LaCoO3 by NaOH: structural evolution and enhanced activity for benzene oxidation[J]. Catal Sci Technol,2017,7(2):496−501. doi: 10.1039/C6CY02489K
    [18]
    WANG S, XUE G, LIANG J, MENG, J. Effect of tourmaline additive on the crystal growth and activity of LaCoO3 for catalytic combustion of methane[J]. J Rare Earths,2014,32(9):855−859. doi: 10.1016/S1002-0721(14)60153-8
    [19]
    WANG S, XU X, ZHU J, TANG, D, ZHAO, Z. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation[J]. J Rare Earths,2019,37(9):970−977. doi: 10.1016/j.jre.2018.11.011
    [20]
    ZHENG YIFAN, LIU YAN, ZHOU HUAN, HUANG WANZHEN, PU ZHIYING. Complete combustion of methane over Co3O4 catalysts: Influence of pH values[J]. J Alloys Compd,2018,734:112−120. doi: 10.1016/j.jallcom.2017.11.008
    [21]
    FAYE J, BAYLET A, TRENTESAUX M, ROYER S, DUMEIGNIL F, DUPREZ D, VALANGE S, TATIBOUËT JM. Influence of lanthanum stoichiometry in La1−xFeO3−δ perovskites on their structure and catalytic performance in CH4 total oxidation[J]. Appl Catal B: Environ,2012,126:134−143. doi: 10.1016/j.apcatb.2012.07.001
    [22]
    ZHANG G, LI C, LIU J, ZHOU LEI, LIU RUIHUA, HAN XIAO, HUANG HUI, HU HAILIANG, LIU YANG, KANG ZHENHUI. One-step conversion from metal–organic frameworks to Co3O4@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts[J]. J Mater A,2014,2(22):8184−8189.
    [23]
    CHEN H, WEI G, LIANG X, LIU P, XI Y, ZHU J. Facile surface improvement of LaCoO3 perovskite with high activity and water resistance towards toluene oxidation: Ca substitution and citric acid etching[J]. Catal Sci Technol,2020,10(17):5829−5839. doi: 10.1039/D0CY01150A
    [24]
    PU Z, ZHOU H, ZHENG Y, HUANG W, LI X. Enhanced methane combustion over Co3O4 catalysts prepared by a facile precipitation method: Effect of aging time[J]. Appl Surf Sci,2017,410:14−21. doi: 10.1016/j.apsusc.2017.02.186
    [25]
    ZHENG Y, FENG X, LIN D, WU E, LUO Y, YOU Y, HUANG B, QIAN Q, CHEN Q. Insights into the low-temperature synthesis of LaCoO3 derived from Co(CH3COO)2 via electrospinning for catalytic propane oxidation[J]. Chin J Chem,2019,38(2):144−150.
    [26]
    FENG Z, DU C, CHEN Y, LANG Y, SHAN B. Improved durability of Co3O4 particles supported on SmMn2O5 for methane combustion[J]. Catal Sci Technol,2018,8(15):3785−3794. doi: 10.1039/C8CY00897C
    [27]
    刘敬伟. Pd/Co3O4/载体催化剂的制备及甲烷催化燃烧性能研究[D]. 上海: 上海大学, 2017.

    LIU Jing-wei. The research on the synthesis and catalytic properties of Pd/Co3O4/supporting for methane combustion[D]. Shanghai: Shanghai University, 2017.
    [28]
    YANG Q, WANG D, WANG C, LI X, LI K, YUE P, LI J. Facile surface improvement method for LaCoO3 for toluene oxidation[J]. Catal Sci Technol,2018,8(12):3166−3173. doi: 10.1039/C8CY00765A
    [29]
    王婷. Co3O4催化剂的制备及低浓度甲烷催化燃烧的性能研究[D]. 太原: 太原理工大学, 2017.

    WANG Ting. Preparation and properties of Co3O4 catalyst for low concentration methane catalytic[D]. Taiyuan: Taiyuan University of Technology, 2017.
    [30]
    ROYER S, ALAMDARI H, DUPREZ D, KALIAGUINE S. Oxygen storage capacity of La1−xAxBO3 perovskites (with A=Sr, Ce; B=Co, Mn) relation with catalytic activity in the CH4 oxidation reaction[J]. Appl Catal B: Environ,2005,58(3/4):273−288. doi: 10.1016/j.apcatb.2004.12.010
    [31]
    WANG Y, REN J, WANG Y, ZHANG F, LU G. Nanocasted synthesis of mesoporous LaCoO3 perovskite with extremely high surface area[J]. J Phys Chem C,2008,112:15293−15298. doi: 10.1021/jp8048394
    [32]
    WU Y, NI X, BEAURAIN A, DUJARDIN C, GRANGER P. Stoichiometric and non-stoichiometric perovskite-based catalysts: Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants[J]. Appl Catal B: Environ,2012,125:149−157. doi: 10.1016/j.apcatb.2012.05.033
    [33]
    LI L, YANG Q, WANG B, WANG D, CRITTENDEN J. Sacrificial carbon strategy for facile fabrication of highly-dispersed cobalt-silicon nanocomposites: Insight into its performance on the CO and CH4 oxidation[J]. J Clean Prod,2021,278:1−9.
    [34]
    QIAN Z, LIU Q L, ZHENG Y F, HAN R, SONG C F, JI N, MA D G. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire[J]. Chemosphere,2020,244:125532−125541. doi: 10.1016/j.chemosphere.2019.125532
    [35]
    ZHANG Y, WANG M, KANG S, PAN T, DENG H, SHAN W, HE H. Investigation of suitable precursors for manganese oxide catalysts in ethyl acetate oxidation[J]. J Environ Sci,2021,104:17−26. doi: 10.1016/j.jes.2020.11.025
    [36]
    HONG E, JEON S A, LEE S S, SHIN C H. Methane combustion over Pd/Ni-Al oxide catalysts: Effect of Ni/Al ratio in the Ni-Al oxide support[J]. Korean J Chem Eng,2018,35(9):1815−1822. doi: 10.1007/s11814-018-0090-0
    [37]
    LAASSIRI S, BION N, DUPREZ D, ALAMDARI H S, ROYER S. Role of Mn + cations in the redox and oxygen transfer properties of BaMxAl12−xO19−δ (M = Mn, Fe, Co) nanomaterials for high temperature methane oxidation[J]. Catal Sci Technol,2013,3(9):2259−2269. doi: 10.1039/c3cy00192j
    [38]
    ZHEN H, ZHANG H, BING D, NI Y, KONG A, SHAN Y. High efficient mesoporous Co3O4 nanocatalysts for methane combustion at low temperature[J]. Chem Select,2016,1(5):979−983.
    [39]
    CHEN H, LI J, CUI W, FEI Z, QIAO X. Precise fabrication of surface-reconstructed LaMnO3 perovskite with enhanced catalytic performance in CH4 oxidation[J]. Appl Surf Sci,2020,505:1−9.
    [40]
    YANG J, HU S, SHI L, HOANG S, GUO Y. Oxygen vacancies and lewis acid sites synergistically promoted catalytic methane combustion over perovskite oxides[J]. Environ Sci Technol,2021,55(13):9243−9254. doi: 10.1021/acs.est.1c00511
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (252) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return