Volume 51 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
ZHANG Wei, NING Shuo, MAO Shi-di, YANG Xi-li, CHEN Zhao-hui, MENG Li-ping. Study of the reaction mechanism based on the formation of the first carbocyclic ring from propargyl and diacetylene[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 492-501. doi: 10.1016/S1872-5813(22)60054-9
Citation: ZHANG Wei, NING Shuo, MAO Shi-di, YANG Xi-li, CHEN Zhao-hui, MENG Li-ping. Study of the reaction mechanism based on the formation of the first carbocyclic ring from propargyl and diacetylene[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 492-501. doi: 10.1016/S1872-5813(22)60054-9

Study of the reaction mechanism based on the formation of the first carbocyclic ring from propargyl and diacetylene

doi: 10.1016/S1872-5813(22)60054-9
Funds:  The project was supported by the National Natural Science Foundation of China (52166007).
  • Received Date: 2022-06-11
  • Accepted Date: 2022-07-08
  • Rev Recd Date: 2022-07-06
  • Available Online: 2022-07-28
  • Publish Date: 2023-04-15
  • The formation of the first carbon ring is a crucial rate-controlling step in developing polycyclic aromatic hydrocarbons (PAHs). It is vital to investigate the mechanism of the creation of the first carbon ring to inhibit the formation of PAHs. To explore the growth process of the first carbocyclic ring, this work used the average localized ionization energy (ALIE) and electrostatic potential (ESP) to predict the reaction sites. Moreover, the reaction paths and chemical kinetic parameters for the generation of the first carbocyclic ring from propargyl (C3H3) + diacetylene (C4H2) are calculated based on the density functional theory  (DFT) method and transition state theory (TST). The results showed that the addition reaction of C3H3 +C4H2 can form five-, six- and seven-membered ring molecules, in which the five-membered ring formation is fastest and the six-membered ring formation is slowest. During the formation of the first carbon ring, the activation energy required for the H transfer and cyclization reactions is large, and the reaction rate is slow, which determines the formation rate of the first carbon ring. The rate of H-transfer reaction on each carbon ring depends on the number of C atoms of the carbon ring, with the five-membered ring being the fastest and the six-membered ring the slowest. This paper improves the reaction kinetics and thermodynamic data of the first carbon ring formation during the combustion of hydrocarbon fuels, which offers a powerful theoretical basis for predicting the generation of PAHs.

  • loading
  • [1]
    刘鹏. 火焰中多环芳香烃(PAHs)的演变机理研究[D]. 上海: 上海交通大学, 2017.

    LIU Peng. Study on evolution mechanism of polycyclic aromatic hydrocarbons (PAHs) in flame [D]. Shanghai: Shanghai Jiao Tong University, 2017.
    [2]
    刘洋, 徐义书, 姚俊杰, 覃龙江, 李煜, 成晓北. 异戊烯醇对甲烷和乙烯的PAH和碳烟生成影响[J]. 燃烧科学与技术,2022,28(2):149−156.

    LIU Yang, XU Yi-shu, YAO Jun-jie, QIN Long-jie, LI Yü, CHEN Xiao-bei. Effects of isopentenol on PAH and soot formation of methane and ethylene[J]. J Combust Sci Technol,2022,28(2):149−156.
    [3]
    TIWARI M, SAHU S K, PANDIT G G. Distribution of PAHs in different compartment of creek ecosystem: Ecotoxicological concern and human health risk[J]. Environ Toxicol Pharmacol,2017,50:58−66. doi: 10.1016/j.etap.2017.01.008
    [4]
    WANG Y, CHUNG S H. Soot formation in laminar counterflow flames[J]. Prog Energy Combust Sci,2019,74:152−238. doi: 10.1016/j.pecs.2019.05.003
    [5]
    RICHTER H, HOWARD J B. Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames[J]. Phys Chem Chem Phys,2002,4(11):2038−2055. doi: 10.1039/b110089k
    [6]
    RICHTER H, HOWARD J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways[J]. Prog Energy Combust Sci,2000,26(4/6):565−608. doi: 10.1016/S0360-1285(00)00009-5
    [7]
    THOMSON M, MITRA T. A radical approach to soot formation[J]. Science,2018,361(6406):978−979. doi: 10.1126/science.aau5941
    [8]
    COLE J A, BITTNE J D, LONGWELL J P, HOWARD J B. Formation mechanisms of aromatic compounds in aliphatic flames[J]. Combust Flame,1984,56(1):51−70. doi: 10.1016/0010-2180(84)90005-1
    [9]
    MILLER J A, KLIPPENSTEIN S J. The recombination of propargyl radicals and other reactions on a C6H6 potential[J]. J Phys Chem A,2003,107(39):7783−7799. doi: 10.1021/jp030375h
    [10]
    GEORGIEVSKILL Y, MILLER J A, KLIPPENSTEIN S J. Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5[J]. Phys Chem Chem Phys,2007,9(31):4259−4268. doi: 10.1039/b703261g
    [11]
    HANSEN N, MILLER J A, WESTMORELAND P R, KASPER T, KOHSE-HÖINGHAUS K, WANG J, COOL T A. Isomer-specific combustion chemistry in allene and propyne flames[J]. Combust Flame,2009,156(11):2153−2164. doi: 10.1016/j.combustflame.2009.07.014
    [12]
    LIU P, LIN H, YANG Y, SHAO C, GUAN B, HUANG Z. Investigating the Role of CH2 Radicals in the HACA Mechanism[J]. J Phys Chem A,2015,119(13):3261−3268. doi: 10.1021/jp5124162
    [13]
    TROGOLO D, MARANZANA A, GHIGO G, TONACHINI G. First ring formation by radical addition of propargyl to but-1-ene-3-yne in combustion. Theoretical study of the C7H7 radical system[J]. J Phys Chem A,2014,118(2):427−440. doi: 10.1021/jp4082905
    [14]
    JIN H, XING L, YANG J, ZHOU Z, FAROOQ A. Continuous butadiyne addition to propargyl: A radical-efficient pathway for polycyclic aromatic hydrocarbons[J]. J Phys Chem Lett,2021,12(33):8109−8114. doi: 10.1021/acs.jpclett.1c02062
    [15]
    YANG B, LI Y, WEI L, HUANG C, WANG J, TIAN Z, YANG R, SHENG L, ZHANG Y. An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization[J]. Proc Combust Inst,2007,31(1):555−563. doi: 10.1016/j.proci.2006.07.171
    [16]
    LI Y, HUANG C, WEI L, YANG B, WANG J, TIAN Z, ZHANG T, SHENG L, QI F. An experimental study of rich premixed gasoline/O2 /Ar flame with tunable synchrotron vacuum ultraviolet photoionization[J]. Energy Fuels,2007,21(4):1931−1941. doi: 10.1021/ef0700578
    [17]
    LI Y, ZHANG L, TIAN Z, YUAN T, WANG J, YANG B, QI F. Experimental study of a fuel-rich premixed toluene flame at low pressure[J]. Energy Fuels,2009,23(3):1473−1485. doi: 10.1021/ef800902t
    [18]
    YUAN W, LI Y, DAGAUT P, YANG J, QI F. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation[J]. Combust Flame,2015,162(1):3−21. doi: 10.1016/j.combustflame.2014.07.009
    [19]
    ZHANG J, LU T. Efficient evaluation of electrostatic potential with computerized optimized code[J]. Phys Chem Chem Phys,2021,23(36):20323−20328. doi: 10.1039/D1CP02805G
    [20]
    LU T, CHEN F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm[J]. J Mol Graphics Modell,2012,38:314−323. doi: 10.1016/j.jmgm.2012.07.004
    [21]
    POLITZER P, MURRARY J S, BULAT F A. Average local ionization energy: A review[J]. J Mol Model,2010,16(11):1731−42. doi: 10.1007/s00894-010-0709-5
    [22]
    FRISCH M J, TRUCKS G W, SCHLEGE H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, FOX D J. Gaussian Inc16, revision A. 03[J]. Gaussian Inc, Wallingford, CT, 2016.
    [23]
    周赛, 刘虎, 于鹏飞, 袁茂博, 薛景文, 车得福. 基于密度泛函理论的CO2氧化含氮焦炭的机理研究[J]. 燃料化学学报,2022,50(1):19−27.

    ZHOU Sai, LIU Hu, YU Peng-fei, YUAN Mao-bo, XUE Jing-wen, CHE De-fu. Study on the mechanism of CO2 oxidation of nitrogenous coke based on density functional theory[J]. J Fuel Chem Technol,2022,50(1):19−27.
    [24]
    刘治港, 田向红, 李言钦. 基于密度泛函理论的高覆盖氧吸附焦炭氧化机理研究[J]. 燃料化学学报,2022,50(8):1−10.

    LIU Gang-zhi, TIAN Xiang-hong, LI Yan-qin. Study on oxidation mechanism of coke with high coverage oxygen adsorption based on density functional theory[J]. J Fuel Chem Technol,2022,50(8):1−10.
    [25]
    HOU D, YOU X. Reaction kinetics of hydrogen abstraction from polycyclic aromatic hydrocarbons by H atoms[J]. Phys Chem Chem Phys,2017,19(45):30772−30780. doi: 10.1039/C7CP04964A
    [26]
    LIYUANHE211. Database of frequency scale factors for electronic model chemistries[EB/OL]. https://comp.chem.umn.edu/freqscale/version3b2.htm, 2016−7−28/2017−3−13.
    [27]
    CANNEAUX S, BOHR F, HENON E. KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. J Comput Chem,2014,35(1):82−93. doi: 10.1002/jcc.23470
    [28]
    RAJ A, MAN P L W, TOTTON T S, SANDER M, SHIRLEY R A, KRAFT M. New polycyclic aromatic hydrocarbon (PAH) surface processes to improve the model prediction of the composition of combustion-generated PAHs and soot[J]. Carbon,2010,48(2):319−332. doi: 10.1016/j.carbon.2009.09.030
    [29]
    FERNANDEZ R A, ELLINGSON B A, MEANA P R, MARQUES J M, TRUHLAR D G. Symmetry numbers and chemical reaction rates[J]. Theor Chem Acc,2007,118(4):813−826.
    [30]
    BOUWMAN J, HRODMARSSON H R, ELLISON G B, BODI A, HEMBERGER P. Five birds with one stone: Photoelectron photoion coincidence unveils rich phthalide pyrolysis chemistry[J]. J Phys Chem A,2021,125(8):1738−1746.
    [31]
    MURDOCH J R. What is the rate-limiting step of a multistep reaction[J]. J Chem Edu,1981,58(1):32−36.
    [32]
    LIU P, ZHANG Y, LI Z, ANTHONY B, LIN H, SARATHY S M, ROBERTS. Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition[J]. Combust Flame,2019,202:276−291. doi: 10.1016/j.combustflame.2019.01.023
    [33]
    MARAZANA A, INDARTO A, GHIGO G, GLAUCO T. First carbon ring closures started by the combustive radical addition of propargyl to butadiyne. A theoretical study[J]. Combust Flame,2013,160(11):2333−2342. doi: 10.1016/j.combustflame.2013.05.024
    [34]
    SOBEREVA. The accuracy of various post HF methods is simple and horizontal measurement[EB/OL]. http://bbs.keinsci.com/thread-6005-1-1.html, 2017-5-29.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (212) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return