Volume 51 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
KONG Xiang-peng, YOU Xin-ming, YUAN Pei-hong, WU Yue-huan, WANG Rui-hong, CHEN Jian-gang. Influence of dopants on the structure and catalytic features of the Cu/ZnO catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 794-803. doi: 10.1016/S1872-5813(22)60073-2
Citation: KONG Xiang-peng, YOU Xin-ming, YUAN Pei-hong, WU Yue-huan, WANG Rui-hong, CHEN Jian-gang. Influence of dopants on the structure and catalytic features of the Cu/ZnO catalyst for dimethyl oxalate hydrogenation to ethylene glycol[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 794-803. doi: 10.1016/S1872-5813(22)60073-2

Influence of dopants on the structure and catalytic features of the Cu/ZnO catalyst for dimethyl oxalate hydrogenation to ethylene glycol

doi: 10.1016/S1872-5813(22)60073-2
Funds:  The project was supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant STIP 2019L0928, 2020L0658) and Shanxi’s 1331 Project
  • Received Date: 2022-07-31
  • Accepted Date: 2022-10-09
  • Rev Recd Date: 2022-09-30
  • Available Online: 2022-11-16
  • Publish Date: 2023-06-15
  • The Cu-M/ZnO catalysts (M = Zr4+, Al3+ and Mg2+) for dimethyl oxalate (DMO) selective hydrogenation to ethylene glycol (EG) were synthesized by the co-precipitation method. The properties of the as-synthesized catalysts were characterized by N2-physisorption, N2O-titration, XRD, H2-TPR, CO2-TPD, SEM, FT-IR and XPS. It was found that the Cu dispersion could be effectively promoted by the dopants incorporated in the Cu/ZnO catalyst. Particularly, a trace amount of Mg2+ and Al3+ dopants could significantly reinforce the chemical interaction between the Cu and ZnO phases by embedding into the ZnO lattice, while the Cu/ZrO2 interaction could be improved with the introduction of Zr4+. For DMO gas-phase hydrogenation, the EG yield of the Cu/ZnO catalyst increased from 75.0% to 85.0% and 90.0% in the presence of Zr4+ and Al3+ dopants, respectively. Particularly, the EG selectivity of Cu-Mg/ZnO catalyst reached up to 95.0% with DMO completely converted for more than 100 h. The correlation between the catalytic behavior and physicochemical features of the Cu/ZnO based catalysts suggested that the surface Cu+ sites was vital for the catalytic behavior with adequate Cu0 sites. Additionally, the strengthened Cu/oxide interaction favored the outstanding stability of the Cu-Zr/ZnO and Cu-Mg/ZnO catalyst for DMO hydrogenation.
  • loading
  • [1]
    ZHU J, ZHAO G F, MENG C, CHEN P J, SHI X R, LU Y. Superb Ni-foam-structured nano-intermetallic InNi3C0.5 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol[J]. Chem Eng J,2021,426:130857. doi: 10.1016/j.cej.2021.130857
    [2]
    CUI G Q, ZHANG X, WANG H, LI Z Y, WANG W L, YU Q, ZHENG L R, WANG Y D, ZHU J H, WEI Min. ZrO2−x modified Cu nanocatalysts with synergistic catalysis towards carbonoxygen bond hydrogenation[J]. Appl Catal B: Environ,2021,280:119406. doi: 10.1016/j.apcatb.2020.119406
    [3]
    CHEN C C, LIN L, YE R P, HUANG L, ZHU L B, HUANG Y Y, QIN Y Y, YAO Y G. Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation[J]. Fuel,2021,290:120083. doi: 10.1016/j.fuel.2020.120083
    [4]
    JIN E, ZHANG Y L, HE L L, HARRIS H G, TENG B T, FAN M H. Indirect coal to liquid technologies[J]. Appl Catal A: Gen,2014,476:158−174. doi: 10.1016/j.apcata.2014.02.035
    [5]
    ZHAO Y J, ZHANG H H, XU Y X, WANG S N, Yan Xu, WANG S P, MA X B. Interface tuning of Cu + /Cu0 by zirconia for dimethyl oxalate hydrogenation to ethylene glycol over Cu/SiO2 catalyst[J]. J Energy Chem,2020,49:248−256. doi: 10.1016/j.jechem.2020.02.038
    [6]
    WEN C, LI F Q, CUI Y Y, DAI W L, FAN K N. Investigation of the structural evolution and catalytic performance of the CuZnAl catalysts in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Catal Today,2014,233:117−126. doi: 10.1016/j.cattod.2013.10.075
    [7]
    WANG X P, CHEN M, CHEN X K, LIN R H, ZHU H J, HUANG C Q, YANG W S, TAN Y, WANG S S, DU Z N, DING Y. Constructing copper-zinc interface for selective hydrogenation of dimethyl oxalate[J]. J Catal,2020,383:254−263.
    [8]
    BEHRENS M, LOLLII G, MURATOVA N, KASATKIN I, HAVECJER M, ALNONCOURT R N, STORCHEVA O, KOHLER K, MUHLERD M, SCHLOGLA R. The effect of Al-doping on ZnO nanoparticles applied as catalyst support[J]. Phys Chem Chem Phys,2013,15:1374−1381. doi: 10.1039/C2CP41680H
    [9]
    KONG X P, CHEN Z, WU Y H, WANG R H, CHEN J G, DING L F. Synthesis of Cu-Mg/ZnO catalysts and catalysis in dimethyl oxalate hydrogenation to ethylene glycol: Enhanced catalytic behavior in the presence of a Mg2 + dopant[J]. RSC Adv,2017,7:49548−49561. doi: 10.1039/C7RA09435C
    [10]
    PENG S Y, Xu Z N, CHEN Q S, WANG Z Q, LV D M, SUN J, CHEN Y, GUO G C. Enhanced stability of Pd/ZnO catalyst for CO oxidative coupling to dimethyl oxalate: Effect of Mg2 + doping[J]. ACS Catal,2015,5(7):4410−4417. doi: 10.1021/acscatal.5b00365
    [11]
    JULIA S, MAIK E, THOMAS L, THOMAS N, GALVAN M C Á, SCHOGL R, BEHRENS M. Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO: M (M = Al, Ga, Mg) catalysts[J]. ACS Catal,2015,5:3260−3270.
    [12]
    LI K Z, CHEN J G. CO2 hydrogenation to methanol over ZrO2-containing catalysts: Insights into ZrO2 induced synergy[J]. ACS Catal,2019,9(9):7840−7861.
    [13]
    ZHANG S Y, LIU Q Y, FAN G L, LI F. Highly-dispersed copper-based catalysts from Cu-Zn-Al layered double hydroxide precursor for Gas-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. Catal Lett,2012,142:1121−1127. doi: 10.1007/s10562-012-0871-8
    [14]
    ZHANG S Y, HU Q, FAN G L, LI F. The relationship between the structure and catalytic performance Cu/ZnO/ZrO2 catalysts for hydrogenation of dimethyl 1, 4-cyclohexane dicarboxylate[J]. Catal Commun,2013,39:96−101. doi: 10.1016/j.catcom.2013.05.011
    [15]
    YUAN Z L, WANG L N, WANG J H, XIA S X, CHEN P, HOU Z, ZHENG X M. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts[J]. Appl Catal B: Environ,2011,101:431−440. doi: 10.1016/j.apcatb.2010.10.013
    [16]
    QIAN J F, LIU Z T, LIN S, LI X L, ALI M. Study on microstructure characteristics of material evidence in coal dust explosion and its significance in accident investigation[J]. Fuel,2020,265:116992. doi: 10.1016/j.fuel.2019.116992
    [17]
    KONG X P, WU Y H, DING L F, WANG R H, CHEN J G. Effect of Cu loading on the structural evolution and catalytic activity of Cu-Mg/ZnO catalysts for dimethyl oxalate hydrogenation[J]. New J Chem,2020,44:4486−4493. doi: 10.1039/C9NJ06085E
    [18]
    CHAWLA S, JAYANTHI K, CHANDER H, HARANATH D, HALDER S K Halder, MAR M. Synthesis and optical properties of ZnO/MgO nanocomposite[J]. J Alloy Compd,2008,459:457−460. doi: 10.1016/j.jallcom.2007.04.303
    [19]
    KONG X P, MA C L, ZHANG J, SUN J Q, CHEN J G, LIU K F. Effect of leaching temperature on structure and performance of Raney Cu catalysts for hydrogenation of dimethyl oxalate[J]. Appl Catal A: Gen,2016,509:153−160. doi: 10.1016/j.apcata.2015.10.029
    [20]
    AGRELL J, BIRGERSSON H, BOUTONNET M, MELIAN-CABRERA I, NAVARRO R M, FIERRO J L G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3[J]. J Catal,2003,219:389−403.
    [21]
    TU Y J, CHEN Y W. Effects of alkaline-earth oxide additives on silica-supported copper catalysts in ethanol dehydrogenation[J]. Ind Eng Chem Res,1998,37:2618−2622. doi: 10.1021/ie9708135
    [22]
    FRUSTER F, CORDARO M, CANNILLA C, BONURA G. Multifunctionality of Cu-ZnO-ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction[J]. Appl Catal B: Environ,2015,162:57−65. doi: 10.1016/j.apcatb.2014.06.035
    [23]
    WANG H F, RHYS D, MARTIN S, HANS-JOACHIM F. Surface science approach to catalyst preparation-Pd deposition onto thin Fe3O4(111) films from PdCl2 precursor[J]. J Catal,2012,286:1−5. doi: 10.1016/j.jcat.2011.09.026
    [24]
    CHAMINAND J, DJAKOVITCH L, GALLEZOT P, MARION P, PINEL C, ROSIER C. Glycerol hydrogenolysis on heterogeneous catalysts[J]. Green Chem,2004,6:359−361. doi: 10.1039/b407378a
    [25]
    SUI X M, LIU Y C, SHAO C L, LIU Y X, XU C S. Structural and photoluminescent properties of ZnO hexagonal nanoprisms synthesized by microemulsion with polyvinyl pyrrolidone served as surfactant and passivant[J]. Chem Phys Lett,2006,424:340−344. doi: 10.1016/j.cplett.2006.04.053
    [26]
    SARAVANAN R, KARTHIKRYAN S, GUPTA V K, SEKARAN G, NARAYANAN V, STEPHEN A. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination[J]. Mater Sci Eng A,2013,33:91−98. doi: 10.1016/j.msec.2012.08.011
    [27]
    GAO X Y, WANG S Y, LI J, ZHENG Y X, ZHANG R J, ZHOU P, YANG Y M, CHEN L Y. Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods[J]. Thin Solid Films,2004,455−456:438−442.
    [28]
    SHIM J B, CHANG Hyukg, KIM S O. Rapid hydrothermal synthesis of zinc oxide nanowires by annealing methods on seed layers[J]. J Nanomater,2011,582764.
    [29]
    QIU X Q, LI L P, ZHENG J, LIU J J, SUN X F, LI G S. Origin of the enhanced photocatalytic activities of semiconductors: A case study of ZnO doped with Mg2 + [J]. J Phys Chem C,2008,112(32):12242−12248. doi: 10.1021/jp803129e
    [30]
    ZHAO Y J, ZHANG Y Q, WANG Y, ZHANG J, XU Y, WANG S P, MA X B. Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation[J]. Appl Catal A: Gen,2017,539:59−69. doi: 10.1016/j.apcata.2017.04.001
    [31]
    LU Z P, YIN H B, WANG A L, HU J, XUE W P, YIN H X, LIU S X. Hydrogenation of ethyl acetate to ethanol over Cu/ZnO/MOx (MOx = SiO2, Al2O3, and ZrO2) catalysts[J]. J Ind Eng Chem,2016,37:208−215. doi: 10.1016/j.jiec.2016.03.028
    [32]
    ZHENG J, HAO Z P, YU J J, HOU H X, HU C, SU J X. Catalytic combustion of methane on novel catalysts derived from Cu-Mg/Al-hydrotalcites[J]. Catal Lett,2005,99:157−163. doi: 10.1007/s10562-005-2108-6
    [33]
    YAO Y Q, WU X Q, GUTIERREZ O Y, JI J, JIN P, WANG S N, XU Y, ZHAO Y J, WANG S P, MA X B, LERCHERBE J A. Roles of Cu+ and Cu0 sites in liquid-phase hydrogenation of esters on core-shell CuZnx@C catalysts[J]. Appl Catal B: Environ,2020,267:118698. doi: 10.1016/j.apcatb.2020.118698
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (262) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return