Volume 51 Issue 5
May  2023
Turn off MathJax
Article Contents
LUO Jia-bing, WANG Xing-zhao, ZHANG Jun, ZHOU Yan. Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 571-580. doi: 10.1016/S1872-5813(22)60080-X
Citation: LUO Jia-bing, WANG Xing-zhao, ZHANG Jun, ZHOU Yan. Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 571-580. doi: 10.1016/S1872-5813(22)60080-X

Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution

doi: 10.1016/S1872-5813(22)60080-X
Funds:  The project was supported by the National Natural Science Foundation of China (21805308), the Taishan Scholar Project of Shandong province, the Key Research and Development Program of Shandong Province (2019GSF109075), the Fundamental Research Funds for the Central Universities (19CX05001A).
More Information
  • Corresponding author: E-mail: yanzhou@upc.edu.cn 18653360882
  • Received Date: 2022-09-01
  • Accepted Date: 2022-10-09
  • Rev Recd Date: 2022-09-27
  • Available Online: 2022-12-26
  • Publish Date: 2023-05-15
  • In this work, a Fe-doped Co3O4 OER electrocatalyst supported by an N-doped hollow nanocage carbon framework (Fe-Co3O4/NC) was successfully prepared by anion exchange and annealing in an air atmosphere strategy. XRD and HRTEM characterizations confirm that Fe the incorporation of Fe into the lattice of Co3O4. XPS characterization clarifies that the valence state of Co increases after the introduction of Fe, which originates from the electrons transfer from Co2+/Co3+ to Fe3+ and is induced by the valence electron configuration of cations. It simulates Co sites in-situ derived into CoOOH active species during the OER process, which is confirmed by the HRTEM and XPS characterization after the OER stability test. Electrochemical performance tests show that the Fe-Co3O4/NC electrocatalyst only exhibits 275 mV overpotential to achieve a current density of 10 mA/cm2 and stably maintains for 20 h at 100 mA/cm2. Together with 20% Pt/C electrocatalyst, the composed two-electrode system only needs 2.041 V applied potential to achieve 100 mA/cm2 for total water splitting in a self-made membrane electrode device, which has industrial application prospects.
  • loading
  • [1]
    YÜKSEL Y E. Elementary science teacher candidates’ views on hydrogen as future energy carrier[J]. Int J Hydrog Energy,2019,44(20):9817−9822. doi: 10.1016/j.ijhydene.2018.12.009
    [2]
    LI J, WANG L, HE H, CHEN Y, GAO Z, MA N, WANG B, ZHENG L, LI R, WEI Y, XU J, XU Y, CHENG B, YIN Z, MA D. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction[J]. Nano Res,2022,15(6):4986−4995. doi: 10.1007/s12274-022-4144-6
    [3]
    HWANG H, KWON T, KIM H Y, PARK J, OH A, KIM B, BAIK H, JOO S H, LEE K. Ni@Ru and NiCo@Ru core-shell hexagonal nanosandwiches with a compositionally tunable core and a regioselectively grown shell[J]. Small,2018,14(3):1702353−1702364. doi: 10.1002/smll.201702353
    [4]
    PRASANKUMAR T, VIGNESHWARAN J, BAGAVATHI M, JOSE S. Expeditious and eco-friendly synthesis of spinel LiMn2O4 and its potential for fabrication of supercapacitors[J]. J Alloys Compd,2020,834:155060−155068. doi: 10.1016/j.jallcom.2020.155060
    [5]
    XU Q, JIANG H, ZHANG H, JIANG H, LI C. Phosphorus-driven mesoporous Co3O4 nanosheets with tunable oxygen vacancies for the enhanced oxygen evolution reaction[J]. Electrochim Acta,2018,259:962−967. doi: 10.1016/j.electacta.2017.11.028
    [6]
    WU Q, DONG A, YANG C, YE L, ZHAO L, JIANG Q. Metal-organic framework derived Co3O4@Mo-Co3S4-Ni3S2 heterostructure supported on Ni foam for overall water splitting[J]. Chem Eng J,2021,413:127492−127501. doi: 10.1016/j.cej.2020.127492
    [7]
    ZHANG C, ZHENG F, ZHANG Z, XIANG D, CHENG C, ZHAUNG Z, LI P, LI X, CHEN W. Fabrication of hollow pompon-like Co3O4 nanostructures with rich defects and high-index facet exposure for enhanced oxygen evolution catalysis[J]. J Mater Chem A,2019,7(15):9059−9067. doi: 10.1039/C9TA00330D
    [8]
    TRAN-PHU T, DAIYAN R, LEVERETT J, FUSCO Z, TADICH A, BERNARDO I DI, KIY A, TRUONG T N, ZHANG Q, CHEN H, KLUTH P, AMAL R, TRICOLI A. Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts[J]. Chem Eng J,2022,429:132180−132192. doi: 10.1016/j.cej.2021.132180
    [9]
    PENG C, LIU H, CHEN J, ZHANG Y, ZHU L, WU Q, ZOU W, WANG J, FU Z, LU Y. Modulating the potential-determining step in oxygen evolution reaction by regulating the cobalt valence in NiCo2O4 via Ru substitution[J]. Appl Surf Sci,2021,544:148897−148904. doi: 10.1016/j.apsusc.2020.148897
    [10]
    YAN L, NIU L, SHEN C, ZHANG Z, LIN J, SHEN F, GONG Y, LI C, LIU X, XU S. Modulating the electronic structure and pseudocapacitance of δ-MnO2 through transitional metal M (M= Fe, Co and Ni) doping[J]. Electrochim Acta,2019,306:529−540. doi: 10.1016/j.electacta.2019.03.174
    [11]
    PAN Y, YAN S, LIU Y, TIAN Z, LI D, CHEN Y, GUO L, WANG Y. Significantly enhanced electrochemical performance of 2D Ni-MOF by carbon quantum dot for high-performance supercapacitors[J]. Electrochim Acta,2022,422:140560−140568. doi: 10.1016/j.electacta.2022.140560
    [12]
    BABAR P, LOKHANDE A, SHIN H H, PAAWAR B, GANG M G, PAWAR S, KIM J H. Cobalt iron hydroxide as a precious metal-free bifunctional electrocatalyst for efficient overall water splitting[J]. Small,2018,14(7):1702568−1702576. doi: 10.1002/smll.201702568
    [13]
    WANG S, LI Q, CHEN M, PU W, WU Y, YANG M. Electrochemical capacitance performance of Fe-doped Co3O4/graphene nanocomposite: investigation on the effect of iron[J]. Electrochim Acta,2016,215:473−482. doi: 10.1016/j.electacta.2016.08.138
    [14]
    ZHANG S L, GUAN B Y, LU X F, XI S, DU Y, LOU X W D. Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution[J]. Adv Mater,2020,32(31):e2002235. doi: 10.1002/adma.202002235
    [15]
    ZHOU Y, LI M, SONG J, LIU Y, ZHANG J, YANG L, ZHANG Z, BO Z, WANG H. High efficiency small molecular acceptors based on novel O-functionalized ladder-type dipyran building block[J]. Nano Energy,2018,45:10−20. doi: 10.1016/j.nanoen.2017.12.030
    [16]
    QIN J, LIU Z, WU D, YANG J. Optimizing the electronic structure of cobalt via synergized oxygen vacancy and Co-N-C to boost reversible oxygen electrocatalysis for rechargeable Zn-air batteries[J]. Appl Catal B: Environ,2020,278:119300−119310. doi: 10.1016/j.apcatb.2020.119300
    [17]
    WANG X, ZHOU Y, LUO J, SUN F, ZHANG J. Synthesis of V-doped urchin-like NiCo2O4 with rich oxygen vacancies for electrocatalytic oxygen evolution reactions[J]. Electrochimica Acta,2022,406:139800−139809. doi: 10.1016/j.electacta.2021.139800
    [18]
    ZHONG F, LI Z, LUO Y, CHEN C, ZHOU C, LIN L, CAI G, AU C, JIANG L. Geometric structure distribution and oxidation state demand of cations in spinel NixFe1-xCo2O4 composite cathodes for solid oxide fuel cells[J]. Chem Eng J,2021,425:131822−131834. doi: 10.1016/j.cej.2021.131822
    [19]
    MIN K, HWANG M, SHIM S E, LIM D, BAECK S -H. Defect-rich Fe-doped Co3O4 derived from bimetallic-organic framework as an enhanced electrocatalyst for oxygen evolution reaction[J]. Chem Eng J,2021,424:130400−130408. doi: 10.1016/j.cej.2021.130400
    [20]
    PAN S, MAO X, YU J, HAO L, DU A, LI B. Remarkably improved oxygen evolution reaction activity of cobalt oxides by an Fe ion solution immersion process[J]. Inorg Chem Front,2020,7(18):3327−3339. doi: 10.1039/D0QI00385A
    [21]
    YUAN H, WANG S, MA Z, KUNDU M, TANG B, LI J, WANG X. Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride[J]. Chem Eng J,2021,404:126474−126487. doi: 10.1016/j.cej.2020.126474
    [22]
    SHENG Y, BOTERO M L, MANUPUTTY M Y, KRAFT M, XU R. Co3O4 and FexCo3–xO4 nanoparticles/films synthesized in a vapor-fed flame aerosol reactor for oxygen evolution[J]. ACS Appl Energy Mater,2018,1(2):655−665. doi: 10.1021/acsaem.7b00172
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1773) PDF downloads(150) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return