Volume 51 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
WANG Yan-bo, HE Lei, LI Wen-cui. Morphology effect of nano-hydroxyapatite as support for loading Ni in methane dry reforming[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 977-986. doi: 10.1016/S1872-5813(23)60332-9
Citation: WANG Yan-bo, HE Lei, LI Wen-cui. Morphology effect of nano-hydroxyapatite as support for loading Ni in methane dry reforming[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 977-986. doi: 10.1016/S1872-5813(23)60332-9

Morphology effect of nano-hydroxyapatite as support for loading Ni in methane dry reforming

doi: 10.1016/S1872-5813(23)60332-9
  • Received Date: 2022-11-07
  • Accepted Date: 2022-12-25
  • Rev Recd Date: 2022-12-24
  • Available Online: 2023-01-10
  • Publish Date: 2023-07-01
  • In this paper, hydroxyapatite (HAP) with nanorod, nanosheet and nanowire morphologies were synthesized with different surface Ca, O and P distributions. After loading 1.25% of nickel, Ni/HAP-R, Ni/HAP-S and Ni/HAP-W catalysts were obtained and applied for MDR. Among them, the Ni/HAP-R catalyst showed the best performance. The geometric structure, electronic properties and surface basicity of the catalyst were characterized by XRD, N2 sorption, FT-IR, XPS and CO2-TPD. It proved that HAP-R possessed the larges surface area, thus beneficial for Ni dispersion to obtain high MDR activity. Meanwhile, it was rich in Ca-O-P which could accelerate the CO2 activation for coke elimination. TPSR experiments further confirmed that the deep cracking of methane on Ni/HAP-R catalyst was inhibited. However, it could be accelerated in the presence of CO2 to produce CO and H2. In this case, Ni/HAP-R catalyst showed excellent anti-coking performance. This study provides inspiration for the design and synthesis of highly stable heterogeneous catalysts.
  • loading
  • [1]
    付彧, 孙予罕. CH4-CO2重整技术的挑战与展望[J]. 中国科学(化学),2020,50(7):816−831.

    FU Yu, SUN Yu-han. CH4-CO2 reforming: challenges and outlook[J]. Sci Sin Chim,2020,50(7):816−831.
    [2]
    张涛, 刘志成, 杨为民. 低碳烷烃与二氧化碳催化转化研究进展[J]. 中国科学(化学),2021,51(2):154−164. doi: 10.1360/SSC-2020-0171

    ZHANG Tao, LIU Zhi-cheng, YANG Wei-min. Progress in the catalytic conversion of light alkanes with carbon dioxide[J]. Sci Sin Chim,2021,51(2):154−164. doi: 10.1360/SSC-2020-0171
    [3]
    阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展,2018,37(10):3850−3857. doi: 10.16085/j.issn.1000-6613.2017-2241

    RUAN Yong-zhe, LU Yao, WANG Sheng-ping. Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming[J]. Chem Ind Eng Progr,2018,37(10):3850−3857. doi: 10.16085/j.issn.1000-6613.2017-2241
    [4]
    张荣俊, 夏国富, 李明丰, 吴玉, 聂红, 李大东. 载体类型对Ni基催化剂甲烷干重整反应性能的影响[J]. 燃料化学学报,2015,43(11):1359−1365. doi: 10.3969/j.issn.0253-2409.2015.11.011

    ZHANG Rong-jun, XIA Guo-fu, LI Ming-feng, WU Yu, NIE Hong, LI Da-dong. Effect of support on catalytic performance of Ni-based catalyst in methane dry reforming[J]. J Fuel Chem Technol,2015,43(11):1359−1365. doi: 10.3969/j.issn.0253-2409.2015.11.011
    [5]
    WANG Y-B, HE L, ZHOU B-C, SHENG J, FAN J, LI W-C. Anti-coking NiCe /HAP catalyst with well-balanced carbon formation and gasification in methane dry reforming[J]. Fuel,2022,329:125477. doi: 10.1016/j.fuel.2022.125477
    [6]
    YANG B, DENG J, LI H, YAN T, ZHANG J, ZHANG D. Coking-resistant dry reforming of methane over Ni/γ-Al2O3 catalysts by rationally steering metal-support interaction[J]. Science,2021,24:102747. doi: 10.1016/j.isci.2021.102747
    [7]
    BIAN Z, ZHONG W, YU Y, WANG Z, JIANG B, KAWI S. Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: effect of calcination temperature[J]. Int J Hydrogen Energy,2021,46:31041−31053. doi: 10.1016/j.ijhydene.2020.12.064
    [8]
    JOO S, SEONG A, KWON O, KIM K, LEE J H, GORTE R J, VOHS J M, HAN J W, KIM G. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition[J]. Sci Adv,2020,6:eabb1573. doi: 10.1126/sciadv.abb1573
    [9]
    HE L, LI M, LI W-C, XU W, WANG Y, WANG Y-B, SHEN W, LU A-H. Robust and coke-free Ni catalyst stabilized by 1–2 nm–thick multielement oxide for methane dry reforming[J]. ACS Catal,2021,11:12409−12416.
    [10]
    ALIPOUR Z, REZAEI M, MESHKANI F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane[J]. J Ind Eng Chem,2014,20(5):2858−2863. doi: 10.1016/j.jiec.2013.11.018
    [11]
    HU Y H. Solid-solution catalysts for CO2 reforming of methane[J]. Catal Today,2009,148(3/4):206−211.
    [12]
    SONG Y, OZDEMIR E, RAMESH S, ADISHEV A, SUBRAMANIAN S, HARALE A, ALBUALI M, FADHEL B A, JAMAL A, MOON D, CHOI S H, YAVUZ C T. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science,2020,367:777−781. doi: 10.1126/science.aav2412
    [13]
    AKRI M, ZHAO S, LI X, ZANG K, LEE A F, ISAACS M A, XI W, GANGARAJULA Y, LUO J, REN Y, CUI Y-T, LI L, SU Y, PAN X, WEN W, PAN Y, WILSON K, LI L, QIAO B, ISHII H, LIAO Y-F, WANG A, WANG X, ZHANG T. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nat Commun,2019,10(1):5181. doi: 10.1038/s41467-019-12843-w
    [14]
    张三兵, 李作鹏, 鲁润华, 王晓来. 羟基磷灰石负载Ni催化剂中Ni含量对催化甲烷二氧化碳重整制合成气性能的影响[J]. 燃料化学学报,2014,42(4):461−466.

    ZHANG San-bing, LI Zuo-peng, LU Run-hua, WANG Xiao-lai. Effects of Ni content of Ni/hydroxyapatite catalysts on catalytic properties for carbon dioxide reforming of methane[J]. J Fuel Chem Technol,2014,42(4):461−466.
    [15]
    王庆楠. 乙醇催化转化制高值含氧化学品[D]. 辽宁: 大连理工大学, 2019.

    WANG Qing-nan. Upgrading of ethanol to value-added oxygen-containing chemicals[D]. Liaoning: Dalian University of Technology, 2019.
    [16]
    TSUCHIDA T, KUBO J, YOSHIOKA T, SAKUMA S, TAKEGUCHI T, UEDA W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. J Catal,2008,259(2):183−189. doi: 10.1016/j.jcat.2008.08.005
    [17]
    LIN K, CHANG J, ZHU Y, WU W, CHENG G, ZENG Y, RUAN M A. facile one-step surfactant-free and low-temperature hydrothermal method to prepare uniform 3D structured carbonated apatite flowers[J]. Cryst Growth Des,2009,9(1):177−181. doi: 10.1021/cg800129u
    [18]
    WANG X, ZHUANG J, PENG Q, LI Y D. Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods[J]. Adv Mater,2006,18(15):2031−2034. doi: 10.1002/adma.200600033
    [19]
    MOBASHERPOUR I, HESHAJIN M S, KAZEMZADEH A, ZAKERI M. Synthesis of nanocrystalline hydroxyapatite by using precipitation method[J]. J Alloys Compd,2007,430:330−333. doi: 10.1016/j.jallcom.2006.05.018
    [20]
    WANG Q-N, ZHOU B-C, WENG X-F, LV S-P, SCHÜTH F, LU A-H. Hydroxyapatite nanowires rich in [Ca–O–P] sites for ethanol direct coupling showing high C6–12 alcohol yield[J]. Chem Commun,2019,55(70):10420−10423. doi: 10.1039/C9CC05454E
    [21]
    LONDOñO-RESTREPO S M, ZUBIETA-OTERO L F, JERONIMO-CRUZ R, MONDRAGON M A, RODRIGUEZ-GARCÍA M E. Effect of the crystal size on the infrared and Raman spectra of bio hydroxyapatite of human, bovine, and porcine bones[J]. J Raman Spectrosc,2019,50:1120−1129. doi: 10.1002/jrs.5614
    [22]
    WANG Q-N, WENG X-F, ZHOU B-C, LV S-P, MIAO S, ZHANG D, HAN Y, SCOTT S L, SCHÜTH F, LU A-H. Direct, selective production of aromatic alcohols from ethanol using a tailored bifunctional cobalt-hydroxyapatite catalyst[J]. ACS Catal,2019,9(8):7204−7216. doi: 10.1021/acscatal.9b02566
    [23]
    JUN J H, LEE T-J, LIM T H, NAM S-W, HONG S-A, YOON K J. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: characterization and activation[J]. J Catal,2004,221(1):178−190. doi: 10.1016/j.jcat.2003.07.004
    [24]
    MENG J, PAN W, GU T, BU C, ZHANG J, WANG X, LIU C, XIE H, PIAO G. One-pot synthesis of a highly active and stable Ni-embedded hydroxyapatite catalyst for syngas production via dry reforming of methane[J]. Energy Fuels,2021,35:19568−19580. doi: 10.1021/acs.energyfuels.1c02851
    [25]
    MENG J, GU T, PAN W, BU C, ZHANG J, WANG X, LIU C, XIE H, PIAO G. Promotional effects of defects on Ni/HAP catalyst for carbon resistance and durability during dry reforming of methane[J], Fuel, 2022, 310: 122363.
    [26]
    WANG Y-B, HE L, ZHOU B-C, TANG F, FAN J, WANG D-Q, LU A-H, LI W-C. Hydroxyapatite nanorods rich in [Ca–O–P] sites stabilized Ni species for methane dry reforming[J]. Ind Eng Chem Res,2021,60:15064−15073.
    [27]
    DAMYANOVA S, PAWELEC B, PALCHEVA R, KARAKIROVA Y, SANCHEZ M C C, TYULIEV G, GAIGNEAUX E, FIERRO J L G. Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production[J]. Appl Catal B: Environ,2018,225:340−353. doi: 10.1016/j.apcatb.2017.12.002
    [28]
    ZHU Y, ZHANG S, CHEN B, ZHANG Z, SHI C. Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane[J]. Catal Today,2016,264:163−170. doi: 10.1016/j.cattod.2015.07.037
    [29]
    李睿杰, 章菊萍, 史健, 李孔斋, 刘慧利, 祝星. Ni/CeO2催化剂的金属-载体界面调控及其低温化学链甲烷干重整性能研究[J]. 燃料化学学报,2022,50(11):1458−1470. doi: 10.1016/S1872-5813(22)60032-X

    LI Rui-jie, ZHANG Ju-ping, SHI Jian, LI Kong-zhai, LIU Hui-li, ZHU Xing. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. J Fuel Chem Technol,2022,50(11):1458−1470. doi: 10.1016/S1872-5813(22)60032-X
    [30]
    BHATTAR S, KRISHNAKUMAR A, KANITKAR S, ABEDIN A, SHEKHAWAT D, HAYNES D J, SPIVEY J J. 110th anniversary: Dry reforming of methane over Ni- and Sr-substituted lanthanum zirconate pyrochlore catalysts: Effect of Ni loading[J]. Ind Eng Chem Res,2019,58(42):19386−19396.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (372) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return