Volume 51 Issue 5
May  2023
Turn off MathJax
Article Contents
SUN Huai-lu, LI Kai-xin, YU Wen-long, DING Jun-wei, SHAN Yu-ling. The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 616-624. doi: 10.1016/S1872-5813(23)60336-6
Citation: SUN Huai-lu, LI Kai-xin, YU Wen-long, DING Jun-wei, SHAN Yu-ling. The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 616-624. doi: 10.1016/S1872-5813(23)60336-6

The performances and structure evolution of Pt-based catalysts for selective hydrogen combustion under propene-rich conditions

doi: 10.1016/S1872-5813(23)60336-6
Funds:  The project was supported by the National Natural Science Foundation of China (22108144) and Natural Science Foundation of Shandong Province (ZR2021MB014)
More Information
  • Corresponding author: E-mail: shanyl@mail.ecust.edu.cn
  • Received Date: 2022-09-30
  • Accepted Date: 2022-11-25
  • Rev Recd Date: 2022-11-15
  • Available Online: 2023-01-10
  • Publish Date: 2023-05-15
  • In the present study, the kinetic behaviour and active sites evolution processes of Pt-based catalysts were investigated. It was found that highly selective hydrogen combustion could be achieved over Sn modified Pt-based catalysts in presence of both propane and propene (over 98%). The stability tests, kinetic study and catalyst characterization revealed that the existence of oxygenated species is the reason for accelerated coking reactions. The formation of graphitized cokes serving as additional unselective active sites and the oxidation of tin in PtSn alloy phases are the primary reasons causing the catalytic selectivity loss during long-run tests under propene-rich condition.
  • loading
  • [1]
    SATTLER J J, RUIZ-MARTINEZ J, SANTILLAN-JIMENEZ E, WECKHUYSEN B M. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chem Rev,2014,114:10613−10653. doi: 10.1021/cr5002436
    [2]
    OTROSHCHENKO T, JIANG G, KONDRATENKO V A, RODEMERCK U, KONDRATENKO E V. Current status and perspectives in oxidative, non-oxidative and CO2-mediated dehydrogenation of propane and isobutane over metal oxide catalysts[J]. Chem Soc Rev,2021,50:473−527. doi: 10.1039/D0CS01140A
    [3]
    SUN P, SIDDIQI G, VINING W C, CHI M, BELL A T. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation[J]. J Catal,2011,282:165−174. doi: 10.1016/j.jcat.2011.06.008
    [4]
    TSIKOYIANNIS J G, STERN D L, GRASSELLI R K. Metal oxides as selective hydrogen combustion (SHC) catalysts and their potential in light paraffin dehydrogenation[J]. J Catal,1999,184:77−86. doi: 10.1006/jcat.1998.2363
    [5]
    GRASSELLI R K, STERN D L, TSIKOYIANNIS J G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC): II. DH + SHC catalysts physically mixed (redox process mode)[J]. Appl Catal A: Gen,1999,189:9−14. doi: 10.1016/S0926-860X(99)00195-7
    [6]
    GRANT J T, CARRERO C A, GOELTL F, VENEGAS J, MUELLER P, BURT S P, SPECHT S E, MCDERMOTT W P, CHIEREGATO A, HERMANS I. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts[J]. Science,2016,354:1570−1573. doi: 10.1126/science.aaf7885
    [7]
    KANEKO S, ARAKAWA T, OHSHIMA M A, KUROKAWA H, MIURA H. Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts[J]. Appl Catal A: Gen,2009,356:80−87. doi: 10.1016/j.apcata.2008.12.022
    [8]
    NAWAZ Z. Light alkane dehydrogenation to light olefin technologies: A comprehensive review[J]. Rev Chem Eng,2015,31:413−436.
    [9]
    LÅTE L, THELIN W, BLEKKAN E A. Selective combustion of hydrogen in the presence of hydrocarbons: Part 2. Metal oxide based catalysts[J]. Appl Catal A: Gen,2002,262:63−68.
    [10]
    BECKERS J, CLERC F, BLANK J H, ROTHENBERG G. Selective hydrogen oxidation catalysts via genetic algorithms[J]. Adv Synth Catal,2010,40:2237−2249.
    [11]
    DUDEK R B, YUNFEI G, JUNSHE Z, FANXING L. Manganese-containing redox catalysts for selective hydrogen combustion under a cyclic redox scheme[J]. AIChE J,2018,64(8):3141−3150. doi: 10.1002/aic.16173
    [12]
    WAKU T, BISCARDI J A, IGLESIA E. Catalytic dehydrogenation of alkanes on Pt/Na-[Fe]ZSM-5 and staged O2 introduction for selective H2 removal[J]. J Catal,2004,222:481−492. doi: 10.1016/j.jcat.2003.12.011
    [13]
    YU C, GE Q, XU H, LI W. Effects of Ce addition on the Pt-Sn/γ-Al2O3 catalyst for propane dehydrogenation to propylene[J]. Appl Catal A: Gen,2006,315:58−67. doi: 10.1016/j.apcata.2006.08.038
    [14]
    RODRÍGUEZ D, SÁNCHEZ J, ARTEAGA G. Effect of tin and potassium addition on the nature of platinum supported on silica[J]. J Mol Catal A: Chem,2005,228:309−317. doi: 10.1016/j.molcata.2004.09.067
    [15]
    SEXTON B A, HUGHES A E, FOGER K. An X-ray photoelectron spectroscopy and reaction study of Pt-Sn catalysts[J]. J Catal,1984,88:466−477. doi: 10.1016/0021-9517(84)90024-1
    [16]
    GARDNER S D, HOFLUND G B, DAVIDSON M R, SCHRYER D R. Evidence of alloy formation during reduction of platinized tin oxide surfaces[J]. J Catal,1989,115:132−137. doi: 10.1016/0021-9517(89)90013-4
    [17]
    ARANA J, RAMIREZ DE LA PISCINA P, LLORCA J, SALES J, HOMS N, FIERRO J. Bimetallic silica-supported catalysts based on Ni-Sn, Pd-Sn, and Pt-Sn as materials in the CO oxidation reaction[J]. Chem Mater,1998,10:1333−1342. doi: 10.1021/cm970728n
    [18]
    NYKÄNEN L, HONKALA K. Selectivity in propene dehydrogenation on Pt and Pt3Sn surfaces from first principles[J]. ACS Catal,2013,3:3026−3030. doi: 10.1021/cs400566y
    [19]
    FU H, LIU Z P, LI Z H, WANG W N, FAN K N. Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface[J]. J Am Chem Soc,2006,128:11114−11123. doi: 10.1021/ja0611745
    [20]
    XIAO L, SHAN Y L, SUI Z J, CHEN D, ZHOU X G, YUAN W K, ZHU Y A. Beyond the reverse horiuti-polanyi mechanism in propane dehydrogenation over Pt catalysts[J]. ACS Catal,2020,10:14887−14902. doi: 10.1021/acscatal.0c03381
    [21]
    SHAN Y L, SUN H L, ZHAO S L, TANG P L, ZHAO W T, DING J W, YU W L, LI L N, FENG X, CHEN D. Effects of support and CO2 on the performances of vanadium oxide-based catalysts in propane dehydrogenation[J].ACS Catal, 2022, 12: 5736−5749.
    [22]
    VAN S A M, KUIPERS J A M, VAN SWAAIJ W P M. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst[J]. Catal Today,2001,66:427−436. doi: 10.1016/S0920-5861(00)00640-4
    [23]
    GUICHARD B, ROY-AUBERGER M, DEVERS E, REBOURS B, QUOINEAUD A, DIGNE M. Characterization of aged hydrotreating catalysts. Part I: Coke depositions, study on the chemical nature and environment[J]. Appl Catal A: Gen,2009,367:1−8. doi: 10.1016/j.apcata.2009.07.024
    [24]
    LI Q, SUI Z, ZHOU X, ZHU Y, ZHOU J, CHEN D. Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study[J]. Top Catal,2011,54:888−896. doi: 10.1007/s11244-011-9708-8
    [25]
    LARSSON M, HULTÉN M, BLEKKAN E A, ANDERSSON B. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation[J]. J Catal,1996,164:44−53. doi: 10.1006/jcat.1996.0361
    [26]
    MALDONADO-HÓDAR F J, MADEIRA L M P, PORTELA M F. The effects of coke deposition on NiMoO4 used in the oxidative dehydrogenation of butane[J]. J Catal,1996,164:399−410. doi: 10.1006/jcat.1996.0396
    [27]
    BARBIER JR J, DUPREZ D. Steam effects in three-way catalysis[J]. Appl Catal B: Environ,1994,4:105−140. doi: 10.1016/0926-3373(94)80046-4
    [28]
    SHAN Y, SUI Z, ZHU Y, CHEN D, ZHOU X. Effect of steam addition on the structure and activity of Pt-Sn catalysts in propane dehydrogenation[J]. Chem Eng J,2015,278:240−248. doi: 10.1016/j.cej.2014.09.107
    [29]
    YU C, GE Q, XU H, LI W. Influence of oxygen addition on the reaction of propane catalytic dehydrogenation to propylene over modified Pt-based catalysts[J]. Ind Eng Chem Res,2007,46:8722−8728.
    [30]
    PRZYSTAJKO W, FIEDOROW R, DALLA LANA I G. Ammoxidation of toluene on coke-covered alumina[J]. Appl Catal,1990,59:129−140. doi: 10.1016/S0166-9834(00)82192-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2320) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return