Volume 51 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
MA Jia-chuan, GUO Ming-xing, WANG Sheng, WANG Shu-dong. Study on the performance of hydrotalcite-based ozone decomposition catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 1026-1034. doi: 10.1016/S1872-5813(23)60337-8
Citation: MA Jia-chuan, GUO Ming-xing, WANG Sheng, WANG Shu-dong. Study on the performance of hydrotalcite-based ozone decomposition catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 1026-1034. doi: 10.1016/S1872-5813(23)60337-8

Study on the performance of hydrotalcite-based ozone decomposition catalyst

doi: 10.1016/S1872-5813(23)60337-8
Funds:  The project was supported by Dalian Institute of Chemical Physics (DICP I202146), Aviation Industry Corporation of China (62502500802), Natural Science Foundation of Liaoning Province (20170540086)
  • Received Date: 2022-11-16
  • Accepted Date: 2022-12-23
  • Rev Recd Date: 2022-12-21
  • Available Online: 2023-01-18
  • Publish Date: 2023-07-01
  • Ozone in the indoor environment is seriously harmful to human health, and the catalytic decomposition method is one of the most effective ozone purification technologies. The development of ozone decomposition catalyst with superior activity and stability is the bottleneck, especially under high humidity, high space velocity, and ambient temperature. Layered double hydroxide (LDH) has a unique two-dimensional layered structure and excellent water resistance. In the paper, Ni3Fe, Ni3Co, Ni3Mn, and Co3Fe hydrotalcite-structured catalysts were prepared by the coprecipitation method. And their ozone catalytic decomposition performance was tested under 30 ℃, 600000 mL/(g·h), low humidity (RH< 5%), and high humidity (RH > 90%). The results showed that Ni3Co-LDH exhibited excellent ozone decomposition performance, and the ozone conversion was 88% and 77% under low humidity and high humidity, respectively. Combined with XRD, BET, SEM, XPS, Raman, FT-IR, TG and other characterizations, the intrinsic mechanism of the excellent ozone decomposition performance of LDH catalysts was revealed. The paper provided new ideas for developing transition metal ozone decomposition catalysts.
  • loading
  • [1]
    刘卫华, 王胜, 薛勇. 飞机燃油箱防爆系统设计与适航[M]. 北京: 科学出版社, 2022.

    LIU Wei-hua, WANG Sheng, XUE Yong. Aircraft Fuel Tank Explosion-Proof System Design and Airworthiness[M]. Beijing: Science Press, 2022.
    [2]
    CAO S, TAO F, TANG Y, LI Y, YU J. Size-and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts[J]. Chem Soc Rev,2016,45:4747−4765. doi: 10.1039/C6CS00094K
    [3]
    LI X, MA J, HE H. Recent advances in catalytic decomposition of ozone[J]. J Environ Sci,2020,94:14−31. doi: 10.1016/j.jes.2020.03.058
    [4]
    HELMIG D. Ozone removal techniques in the sampling of atmospheric volatile organic trace gases[J]. Atmos Environ,1997,31:3635−3651. doi: 10.1016/S1352-2310(97)00144-1
    [5]
    STEPHENS S, ROSSI M J, GOLDEN D M. The heterogeneous reaction of ozone on carbonaceous Surfaces[J]. Int J Chem Kinet,1986,18:1133−1149. doi: 10.1002/kin.550181004
    [6]
    LIAN Z, MA J, HE H. Decomposition of high-level ozone under high humidity over Mn-Fe catalyst: The influence of iron precursors[J]. Catal Commun,2015,59:156−160. doi: 10.1016/j.catcom.2014.10.005
    [7]
    SPASOVA I, NIKOLOV P, MEHANDJIEV D. Ozone decomposition over alumina-supported copper, manganese and copper-manganese catalysts[J]. Ozone Sci Eng,2007,29:41−45. doi: 10.1080/01919510601111665
    [8]
    NIKOLOV P, GENOV K, KONOVA P, MILENOVA K, BATAKLIEV T, GEORGIEV V, KUMAR N, SARKER D K, PISHEV D, RAKOVSKY S. Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature[J]. J Hazard Mater,2010,184:16−19. doi: 10.1016/j.jhazmat.2010.07.056
    [9]
    HEISIG C, ZHANG W, OYAMA S T. Decomposition of ozone using carbon-supported metal oxide catalysts[J]. Appl Catal B: Environ,1997,14:117−129. doi: 10.1016/S0926-3373(97)00017-9
    [10]
    GUROL M D, SINGER P C. Kinetics of ozone decomposition: A dynamic approach[J]. Environ Sci Technol,1982,16(7):377−383. doi: 10.1021/es00101a003
    [11]
    王婷, 王胜, 符启军, 邢德风, 王树东. 负载型贵金属催化剂的臭氧分解性能[J]. 工业催化,2022,30(1):30−38.

    WANG Ting, WANG Sheng, FU Qi-jun, XING De-feng, WANG Shu-dong. Ozonation performance of supported noble metal catalysts[J]. Ind Catal,2022,30(1):30−38.
    [12]
    ZHANG L, WANG S, LV L, DING Y, TIAN D, WANG S. Insights into the reactive and deactivation mechanisms of manganese oxides for ozone elimination: The roles of surface oxygen species[J]. Langmuir,2021,37:1410−1419. doi: 10.1021/acs.langmuir.0c02841
    [13]
    LIU Y, ZHANG P. Removing surface hydroxyl groups of Ce-modified MnO2 to significantly improve its stability for gaseous ozone decomposition[J]. J Phys Chem C,2017,121:23488−23497. doi: 10.1021/acs.jpcc.7b07931
    [14]
    王丝雨. 锰基水滑石的合成及臭氧催化分解性能研究[D]. 北京: 化工大学, 2020.

    WANG Si-yu. Preparation of manganese-based layered double hydroxide high catalytic ozone decomposition performance[D]. Beijing: University of Chemical Technology, 2020.
    [15]
    ZOU X, GOSWAMI A, ASEFA T. Efficient noble metal-free (electro) catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide[J]. J Am Chem Soc,2013,135:17242−17245. doi: 10.1021/ja407174u
    [16]
    YING M, LIN X, YANG G, YE H, PAN H, DU M. Rich oxygen vacancies on ultrathin NiFe layered double hydroxide nanosheets raised by cerium-assisted synthesis for enhanced electrocatalytic water oxidation[J]. Colloid Surface A,2021,627:127142. doi: 10.1016/j.colsurfa.2021.127142
    [17]
    陈慧琴, 詹正坤. 铜锰铝水滑石的合成、表征及衍生复合氧化物酸碱催化活性研究[J]. 化学研究与应用,2007,19(8):877−881.

    CHEN Hui-qin, ZHAN Zheng-kun. Synthesis, characterization and acid-base catalytic activity of composite oxides derived from copper, manganese and aluminum hydrotalcite[J]. Chem Res Appl,2007,19(8):877−881.
    [18]
    TAOUFIK N, SADIQ M, ABDENNOURI M, QOURZAL S, KHATAEE A, SILLANPÄÄ M, BARKA N. Recent advances in the synthesis and environmental catalytic applications of layered double hydroxides-based materials for degradation of emerging pollutants through advanced oxidation processes[J]. Mater Res Bull,2022,154:111924. doi: 10.1016/j.materresbull.2022.111924
    [19]
    WANG S, ZHU Y, ZHANG Y, WANG B, YAN H, LIU W, LIN Y. Manganese-based layered double hydroxide nanoparticles as highly efficient ozone decomposition catalysts with tunable valence state[J]. Nanoscale,2020,12:12817−12823. doi: 10.1039/D0NR02796K
    [20]
    MA J, CHEN Y, HE G, HE H. A robust H-transfer redox mechanism determines the high-efficiency catalytic performance of layered double hydroxides[J]. Appl Catal B: Environ,2021,285:119806. doi: 10.1016/j.apcatb.2020.119806
    [21]
    LIU B, ZHANG M, YANG J, ZHU M. Efficient ozone decomposition over bifunctional Co3Mn-layered double hydroxide with strong electronic interaction[J]. Chin Chem Lett,2023,33:4679−4682.
    [22]
    DAI X, DAI Y, LU J, PU L, WANG W, JIN J, MA F, TIE N. Cobalt oxide nanocomposites modified by NiCo-layered double hydroxide nanosheets as advanced electrodes for supercapacitors[J]. Ionics,2020,26:2501−2511. doi: 10.1007/s11581-019-03333-6
    [23]
    ZHOU X, SHI J, BAI X. Ultrasonic assisted preparation of ultrafine Pd supported on NiFe-layered double hydroxides for p-nitrophenol degradation[J]. Environ Sci Pollut Res,2022,29(37):56178−56199.
    [24]
    HOU B, DU Y, LIU X, CI C, WU X, XIE X. Tunable preparation of highly dispersed NixMn-LDO catalysts derived from NixMn-LDHs precursors and application in low-temperature NH3-SCR reactions[J]. RSC Adv,2019,9:24377. doi: 10.1039/C9RA04578C
    [25]
    SRIRAM B, BABY J N, WANG S F, RANJITHA R, GOVINDASAMY M, GEORGE M. Eutectic solvent-mediated synthesis of NiFe-LDH/sulfur-doped carbon nitride arrays: Investigation of electrocatalytic activity for the dimetridazole sensor in human sustenance[J]. ACS Sustainable Chem Eng,2020,8:17772−17782. doi: 10.1021/acssuschemeng.0c06070
    [26]
    ZHOU D, WANG S, JIA Y, XIONG X, YANG H, LIU S, TANG J, ZHANG J, LIU D, ZHENG L, KUANG Y, SUN X, LIU B. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis[J]. Angew Chem,2019,131:746−750. doi: 10.1002/ange.201809689
    [27]
    XU H, WU J, LIU J, CHEN Y, FAN X. Growth of cobalt-nickel layered double hydroxide on nitrogen-doped graphene by simple co-precipitation method for supercapacitor electrodes[J]. J Mater Sci: Mater Electron,2018,29:17234−17244.
    [28]
    LIU S, ZHU J, SUN M, MA Z, HU K, NAKAJIMA T, LIU X, SCHMUKI P, WANG L. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets[J]. J Mater Chem A,2020,8:2490. doi: 10.1039/C9TA12768B
    [29]
    ZHU J, SUN M, LIU S, LIU X, HU K, WANG L. Study of active sites on Se-MnS/NiS heterojunctions as highly efficient bifunctional electrocatalysts for overall water splitting[J]. J Mater Chem A,2019,7:26975. doi: 10.1039/C9TA10860B
    [30]
    ZHANG W, ANGUITA P, DÍEZ-RAMÍREZ J, DESCORME C, VALVERDE J L, GIROIR-FENDLER A. Comparison of different metal doping effects on Co3O4 catalysts for the total oxidation of toluene and propane[J]. Catalysts,2020,10(8):865. doi: 10.3390/catal10080865
    [31]
    SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure Appl Chem,1985,57(4):603−619. doi: 10.1351/pac198557040603
    [32]
    WANG Z, CHEN Y, LI X, HE G, MA J, HE H. Layered double hydroxide catalysts for ozone decomposition: The synergic role of M2 + and M3 + [J]. Environ Sci Technol,2022,56:1386−1394.
    [33]
    LU Z, QIAN L, TIAN Y, LI Y, SUN X, DUAN X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts[J]. Chem Commun,2016,52(5):908−911. doi: 10.1039/C5CC08845C
    [34]
    ZHAO J, CHEN J, XU S, SHAO M, ZHANG Q, WEI F, MA J, WEI M, EVANS D G, DUAN X. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors[J]. Adv Funct Mater,2014,24:2938−2946. doi: 10.1002/adfm.201303638
    [35]
    LV L, XU K, WANG C, WAN H, RUAN Y, LIU J, ZOU R, MIAO L, OSTRIKOV K, LAN Y, JIANG J. Intercalation of glucose in NiMn-layered double hydroxide nanosheets: An effective path way towards battery-type electrodes with enhanced performance[J]. Electrochimica Acta,2016,216:35−43. doi: 10.1016/j.electacta.2016.08.149
    [36]
    YANG Y, HUANG J, WANG S, DENG S, WANG B, YU G. Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves[J]. Appl Catal B: Environ, 2013, 142–143: 567–568.
    [37]
    CARDINALE A M, CARBONE C, CONSANI S, FORTUNATO M, PARODI N. Layered double hydroxides for remediation of industrial wastewater from a galvanic plant[J]. Crystals,2020,10(6):443. doi: 10.3390/cryst10060443
  • 2022-F075 supporting+information.docx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (201) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return