Volume 51 Issue 5
May  2023
Turn off MathJax
Article Contents
LIU Ya-jie, QIN Fa-jie, HOU Xiao-ning, GAO Zhi-xian. Effects of ball milling medium on Cu-Al spinel sustained release catalyst for H2 generation from methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 665-672. doi: 10.1016/S1872-5813(23)60342-1
Citation: LIU Ya-jie, QIN Fa-jie, HOU Xiao-ning, GAO Zhi-xian. Effects of ball milling medium on Cu-Al spinel sustained release catalyst for H2 generation from methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 665-672. doi: 10.1016/S1872-5813(23)60342-1

Effects of ball milling medium on Cu-Al spinel sustained release catalyst for H2 generation from methanol steam reforming

doi: 10.1016/S1872-5813(23)60342-1
Funds:  The project was supported by the National Natural Science Foundation of China (21673270, 22202093) and the Natural Science Foundation for Young Scientists of Shanxi Province of China (20210302123358, 20210302124338)
More Information
  • Corresponding author: E-mail: 709366043@qq.comgaozx@lnpu.edu.cn
  • Received Date: 2022-12-30
  • Accepted Date: 2023-01-11
  • Rev Recd Date: 2023-01-11
  • Available Online: 2023-03-06
  • Publish Date: 2023-05-15
  • Using pseudo-boehmite and ultrafine copper hydroxide as the raw materials with n(Cu/Al) = 1∶3, the effects of ball milling medium on the Cu-Al spinel sustained release catalysts prepared via the solid-state reaction method are explored. The obtained catalysts are characterized by XRD, BET, and H2-TPR techniques, and their catalytic properties in methanol steam reforming (MSR) are evaluated. The results demonstrate that Cu-Al spinel solid solution can be synthesized by both dry and wet mechanical ball milling methods, and more Cu2 + ions are found to be incorporated into the spinel lattice through the latter method. The crystalline sizes of as-synthesized spinels are similar; however, the specific surface areas and pore volumes are different as well as their reduction properties. Compared with the dry milling method, the wet ball milling method can facilitate the solid phase reaction, generating catalysts with solely spinel crystalline phase, higher specific surface area, and larger pore volume. Furthermore, catalysts derived from the wet milling method demonstrate improved catalytic activity and stability, and lower CO selectivity in MSR. The highest activity is obtained over CuHAl-Ac-950 prepared using ethanol (95%) as the ball milling medium.
  • loading
  • [1]
    MINDRU I, GINGASU D, PATRON L, MARINESCU G, CALDERON-MORENO J M, PREDA S, OPREA O, NITA S. Copper aluminate spinel by soft chemical routes[J]. Ceram Int,2016,42:154−164. doi: 10.1016/j.ceramint.2015.08.058
    [2]
    KWAK B K, PARK D S, YUN Y S, YI J. Preparation and characterization of nanocrystalline CuAl2O4 spinel catalysts by sol-gel method for the hydrogenolysis of glycerol[J]. Catal Commun,2012,24:90−95. doi: 10.1016/j.catcom.2012.03.029
    [3]
    PATEL S, PANT K K. Activity and stability enhancement of copper-alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol[J]. J Power Sources,2006,159:139−143. doi: 10.1016/j.jpowsour.2006.04.008
    [4]
    HUANG Y H, WANG S F, TSAI A P, KAMEOKA S. Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X=Fe, Mn, Al, La)[J]. Ceram Int,2014,40:4541−4551. doi: 10.1016/j.ceramint.2013.08.130
    [5]
    XI H J, LI G J, QING S J, HOU X N, ZHAO J Z, LIU Y J, GAO Z X. Cu-Al spinel catalyst prepared by solid phase method for methanol steam reforming[J]. J Fuel Chem Technol,2013,41:998−1002.
    [6]
    QIN F J, LIU Y J, QING S J, HOU X N, GAO Z X. Cu-Al spinel as a sustained release catalyst for H2 production from methanol steam reforming: Effects of different copper sources[J]. J Fuel Chem Technol,2017,45:1481−1488. doi: 10.1016/S1872-5813(17)30065-8
    [7]
    XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu-Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed,2014,53:11886−11889. doi: 10.1002/anie.201405213
    [8]
    LIU Y J, QING S J, HOU X N, QIN F J, WANG X, GAO Z X, XIANG H W. Temperature dependence of Cu-Al spinel formation and its catalytic performance in methanol steam reforming[J]. Catal Sci Technol,2017,7:5069−5078. doi: 10.1039/C7CY01236E
    [9]
    FAN Y, LU X B, NI Y W, ZHANG H J, ZHU M W, LI Y, CHEN J P. Catalytic destruction of chlorinated aromatic pollutants over mesoporous CuxMg1–xAl2O4 spinel oxides[J]. Appl Catal B: Environ,2011,101:606−612. doi: 10.1016/j.apcatb.2010.11.001
    [10]
    BAYAL N, JEEVANANDAM P. Synthesis of metal aluminate nanoparticles by sol-gel method and studies on their reactivity[J]. J Alloys Compd,2012,516:27−32. doi: 10.1016/j.jallcom.2011.11.080
    [11]
    LV W Z, LUO Z L, YANG H, LIU B, WENG W J, LIU J H. Effect of processing conditions on sonochemical synthesis of nanosized copper aluminate powders[J]. Ultrason Sonochem,2010,17:344−351. doi: 10.1016/j.ultsonch.2009.06.006
    [12]
    RIVAS M E. Ball milling towards green synthesis: applications, projects, challenges[J]. Johnson Matthey Tech Rev,2016,60:148−150. doi: 10.1595/205651316X691375
    [13]
    QIN F J. Synthesis and characterization of Cu-Al spinel sustained release catalysts[D]. Beijing: University of Chinese Academy of Sciences, 2018.
    [14]
    BAKKER H, ZHOU G F, YANG H. Mechanically driven disorder and phase transformations in alloys[J]. Prog Mater Sci,1995,39:159−241. doi: 10.1016/0079-6425(95)00001-1
    [15]
    LEE W H, LEE J, BAE J D, BYUN C S, KIM D K. Syntheses of Ni2Si, Ni5Si2, and NiSi by mechanical alloying[J]. Scripta Mater,2001,44:97−103. doi: 10.1016/S1359-6462(00)00547-9
    [16]
    KRYSTNA W C, GAMRAT K, FELA K. Chemical reactions during high-energy ball milling of the Cu2(OH)2CO3–Al0 system[J]. Solid State Ionics,2003,164:193−198. doi: 10.1016/S0167-2738(03)00320-5
    [17]
    AKGUL F A, AKGUL G. Microstructural properties and local atomic structures of cobalt oxide nanoparticles synthesized by mechanical ball-milling process[J]. Kurban M Philos Mag,2016,96:3211−3226. doi: 10.1080/14786435.2016.1232493
    [18]
    MCCORMICK P G, TSUZUKI T, ROBINSON J S, DING J. Nanopowders synthesized by mechanochemical processing[J]. Adv Mater,2001,13:1008−1010. doi: 10.1002/1521-4095(200107)13:12/13<1008::AID-ADMA1008>3.0.CO;2-Q
    [19]
    GOYA G F, RECHENBERG H R. Magnetic properties of ZnFe2O4 synthesized by ball milling[J]. J Magn Magn Mater,1999,203:141−142. doi: 10.1016/S0304-8853(99)00250-4
    [20]
    JANOT R, GUÉRARD D. One-step synthesis of maghemite nanometric powders by ball-milling[J]. J Alloys Compd,2002,333:302−307. doi: 10.1016/S0925-8388(01)01737-6
    [21]
    CROCKER M, HEROLD R H M, EMEIS C A, KRIJGER M. Preparation of acidic forms of montmorillonite clay via solid-state ion-exchange reactions[J]. Catal Lett,1992,1:339−345.
    [22]
    KECSENOVITY E, FEJES D, RETI B, HERNADI K. Growth and characterization of bamboo-like carbon nanotubes synthesized on Fe-Co-Cu catalysts prepared by high-energy ball milling[J]. Phys Status Solidi B,2013,250:2544−2548. doi: 10.1002/pssb.201300075
    [23]
    HUANG L, KRAMER G J, WIELDRAAIJER W, BRANDS D S, POELS E K, CASTRICUM H L, BAKKER H. Methanol synthesis over Cu/ZnO catalysts prepared by ball milling[J]. Catal Lett,1997,48:55−59. doi: 10.1023/A:1019014701674
    [24]
    GRANDJEAN D, CASTRICUM H L, VAN J C, WECKHUYSEN B M. Highly mixed phases in ball-milled Cu/ZnO catalysts: an EXAFS and XANES study[J]. J Phys Chem B,2006,110:16892−16901. doi: 10.1021/jp055820i
    [25]
    MAHMOUD M H, HASSAN A M, SAID E A A, HAMDEH H H. Structural; magnetic and catalytic properties of nanocrystalline Cu0.5Zn0.5Fe2O4 synthesized by microwave combustion and ball milling methods[J]. J Mol Struct,2016,1114:1−6. doi: 10.1016/j.molstruc.2016.02.051
    [26]
    RALPHS K, HARDACRE C, JAMES S L. Application of heterogeneous catalysts prepared by mechanochemical synthesis[J]. Chem Soc Rev,2013,42:7701−7718. doi: 10.1039/c3cs60066a
    [27]
    XU J L, GUO Q, GAO W, KANG Z, XI G Q, ZHANG L. Effect of milling mediums on nano-Sb powders prepared by ball milling[J]. J Aeronaut Mater,2013,33:50−55.
    [28]
    LIU Y J, QING S J, HOU X N, ZHANG L, GAO Z X, XIANG H W. Synthesis of Cu-Al spinels and its non-isothermal formation kinetics analysis[J]. J Fuel Chem Technol,2020,48:338−348.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1996) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return