Volume 51 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHANG Jia-yu, SUN Na, LING Li-xia, ZHANG Ri-guang, JIA Li-tao, LI De-bao, WANG Bao-jun. Effect of different valence metals doping on methane activation over La2O3(001) surface[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 673-683. doi: 10.1016/S1872-5813(23)60343-3
Citation: ZHANG Jia-yu, SUN Na, LING Li-xia, ZHANG Ri-guang, JIA Li-tao, LI De-bao, WANG Bao-jun. Effect of different valence metals doping on methane activation over La2O3(001) surface[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 673-683. doi: 10.1016/S1872-5813(23)60343-3

Effect of different valence metals doping on methane activation over La2O3(001) surface

doi: 10.1016/S1872-5813(23)60343-3
Funds:  The project was supported by the National Key R&D Program of China (2021YFA1502804), Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2022SX-FR001), the Key Projects of National Natural Science Foundation of China (21736007), and the Natural Science Foundation of Shanxi Province (20210302123094)
More Information
  • La2O3 as a catalyst is used for oxidative coupling of methane (OCM) reactions due to its excellent stability and high C2 selectivity, but poor activity on methane dissociation limits its wide application. Different valence metals are doped on the La2O3(001) surface to improve the methane conversion activity, and the activation of methane on metal-doped La2O3(001) surfaces has been investigated via the density functional theory (DFT) calculations. The relationship between the valence states of doped metals and the methane conversion activities shows that doping low valence metals (Li, Na, K, Mg, Ca, Sr and Ba) and equivalent metals (Al, Ga, In) can significantly improve the conversion activity of methane. Among them, the activation energy of methane on the Li-La2O3(001) surface is the lowest, which is only 13.0 kJ/mol. However, doping of high valence metals (Zr, Nb, Re and W) cannot improve the CH4 dissociation activity. Furthermore, the relationships between surface oxygen vacancy formation energies, acid-base properties and the activation energies of CH4 have also been investigated. The results show that with the increase of metal valence state, the oxygen vacancy formation energy increases, while the dissociation activity of CH4 decreases. The introduction of alkali and alkaline earth metals increases the alkalinity of La2O3(001) surface, and the alkalinity of La2O3(001) doped with the alkali metal is stronger than that with the alkaline earth metal, exhibiting higher dissociation activity of CH4. Our research may provide a guide for improving methane conversion activity on La2O3 catalysts.
  • loading
  • [1]
    SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects[J]. Chem Rev,2017,117(13):8497−8520. doi: 10.1021/acs.chemrev.6b00715
    [2]
    NWAOHA C, WOOD D A. A review of the utilization and monetization of Nigeria's natural gas resources: Current realities[J]. J Nat Gas Sci Eng,2014,18:412−432. doi: 10.1016/j.jngse.2014.03.019
    [3]
    PULIYALIL H, JURKOVIĆ D L, DASIREDDY V D B C, LIKOZAR B. A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels[J]. RSC Adv,2018,8:27481−27508. doi: 10.1039/C8RA03146K
    [4]
    RAVI M, RANOCCHIARI M, BOKHOVEN J A. The direct catalytic oxidation of methane to methanol-A critical assessment[J]. Angew Chem Int Ed,2017,56(52):16464−16483. doi: 10.1002/anie.201702550
    [5]
    WANG B W, ALBARRACÍN-SUAZO S, PAGÁN-TORRES Y, NIKOLLA E. Advances in methane conversion processes[J]. Catal Today,2017,285:147−158. doi: 10.1016/j.cattod.2017.01.023
    [6]
    SIDIK S M, TRIWAHYONO S, JALIL A A, MAJID Z A, SALAMUN N, TALIB N B, ABDULLAH T A T. CO2 reforming of CH4 over Ni-Co/MSN for syngas production: Role of Co as a binder and optimization using RSM[J]. Chem Eng J,2016,295:1−10. doi: 10.1016/j.cej.2016.03.041
    [7]
    WANG S B, CONG L N, ZHAO C C, LI Y T, PANG Y Q, ZHAO Y H, LI S G, SUN Y H. First principles studies of CO2 and O2 chemisorption on La2O3 surfaces[J]. Phys Chem Chem Phys,2017,19:26799−26811. doi: 10.1039/C7CP05471H
    [8]
    GAMBO Y, JALIL A A, TRIWAHYONO S, ABDULRASHEED A A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review[J]. J Ind Eng Chem,2018,59:218−229. doi: 10.1016/j.jiec.2017.10.027
    [9]
    OLIVOS-SUAREZ A I, SZECSENYI A, HENSEN E J M, RUIZ-MARTINEZ J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities[J]. ACS Catal,2016,6(5):2965−2981. doi: 10.1021/acscatal.6b00428
    [10]
    BECK B, FLEISCHER V, ARNDT S, HEVIA M G, URAKAWA A, HUGO P, SCHOMÄCKER R. Oxidative coupling of methane-A complex surface/gas phase mechanism with strong impact on the reaction engineering[J]. Catal Today,2014,228:212−218. doi: 10.1016/j.cattod.2013.11.059
    [11]
    LOMONOSOV V I, SINEV M Y. Oxidative coupling of methane: Mechanism and kinetics[J]. Kinet Catal,2016,57:647−676. doi: 10.1134/S0023158416050128
    [12]
    LUNSFORD J H. The catalytic oxidative coupling of methane[J]. Angew Chem Int Ed,1995,34:970−980. doi: 10.1002/anie.199509701
    [13]
    SUN J J, THYBAUT J W, MARIN G B. Microkinetics of methane oxidative coupling[J]. Catal Today,2008,137(1):90−102. doi: 10.1016/j.cattod.2008.02.026
    [14]
    SUN X Y, LI B, METIU H. Methane dissociation on Li-, Na-, K-, and Cu-doped flat and stepped CaO(001)[J]. J Phys Chem C,2013,117(14):7114−7122. doi: 10.1021/jp4002803
    [15]
    LUO L, JIN Y, PAN H. Distribution and role of Li in Li-doped MgO catalysts for oxidative coupling of methane[J]. J Catal,2017,346:57−61. doi: 10.1016/j.jcat.2016.11.034
    [16]
    MASUNO A, INOUE H. High refractive index of 0.30 La2O3–0.70 Nb2O5 glass prepared by containerless processing[J]. Appl Phys Express,2010,3(10):102601. doi: 10.1143/APEX.3.102601
    [17]
    SUN Y N, SHEN Y, SONG J J, BA R B, HUANG S S, ZHAO Y H, ZHANG J, SUN Y H, ZHU Y. Facet-controlled CeO2 nanocrystals for oxidative coupling of methane[J]. J Nanosci Nanotechnol,2016,16(5):4692−4700. doi: 10.1166/jnn.2016.11623
    [18]
    HUANG P, ZHAO Y H, ZHANG J, ZHU Y, SUN Y H. Exploiting shape effects of La2O3 nanocatalysts for oxidative coupling of methane reaction[J]. Nanoscale,2013,5(22):10844−10848. doi: 10.1039/c3nr03617k
    [19]
    FENG R, NIU P Y, HOU B, WANG Q, JIA L T, LIN M G, LI D B. Synthesis and characterization of the flower-like LaxCe1−xO1.5 + δ catalyst for low-temperature oxidative coupling of methane[J]. J Energy Chem,2022,67:342−353. doi: 10.1016/j.jechem.2021.10.018
    [20]
    PALMER M S, NEUROCK M, OLKEN M M. Periodic density functional theory study of methane activation over La2O3:   activity of O2−, O, O22−, oxygen point defect, and Sr2 + -doped surface sites[J]. J Am Chem Soc,2002,124(28):8452−8461. doi: 10.1021/ja0121235
    [21]
    ZAVYALOVA U, HOLENA M, SCHLÖGL R, BAERNS M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high‐performance catalysts[J]. ChemCatChem,2011,3(12):1935−1947. doi: 10.1002/cctc.201100186
    [22]
    WANG S B, LI S G, DIXON D A. Mechanism of selective and complete oxidation in La2O3-catalyzed oxidative coupling of methane[J]. Catal Sci Technol,2020,10:2602−2614. doi: 10.1039/D0CY00141D
    [23]
    ALVAREZ-GALVAN M C, MOTA N, OJEDA M, ROJAS S, NAVARRO R M, FIERRO J L G. Direct methane conversion routes to chemicals and fuels[J]. Catal Today,2011,171(1):15−23. doi: 10.1016/j.cattod.2011.02.028
    [24]
    IGENEGBAI V O, MEYER R J, LINIC S. In search of membrane-catalyst materials for oxidative coupling of methane: performance and phase stability studies of gadolinium-doped barium cerate and the impact of Zr doping[J]. Appl Catal B: Environ,2018,230(15):29−35.
    [25]
    SOLLIER B. M, BONNE M, KHENOUSSI N, MICHELIN L, MIRÓ E E, GÓMEZ L. E, BOIX A V, LEBEAU B. Synthesis and characterization of electrospun nanofibers of Sr-La-Ce oxides as catalysts for the oxidative coupling of methane[J]. Ind Eng Chem Res,2020,59(25):11419−11430. doi: 10.1021/acs.iecr.0c01154
    [26]
    SONG J J, SUN Y N, BA R B, HUANG S S, ZHAO Y H, ZHANG J, SUN Y H, ZHU Y. Monodisperse Sr-La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C2 hydrocarbons[J]. Nanoscale,2015,7(6):2260−2264. doi: 10.1039/C4NR06660J
    [27]
    DEBOY J M, HICKS R F. Oxidative coupling of methane over alkaline earth promoted La2O3[J]. J Chem Soc, Chem Commun,1988,982−984.
    [28]
    LI B, METIU H. DFT studies of oxygen vacancies on undoped and doped La2O3 surfaces[J]. J Phys Chem C,2010,114(28):12234−12244. doi: 10.1021/jp103604b
    [29]
    MCFARLAND E W, METIU H. Catalysis by doped oxides[J]. Chem Rev,2013,113(6):4391−4427. doi: 10.1021/cr300418s
    [30]
    LICHTENSTEIN A I, KATSNELSON M I. Ab initio calculations of quasiparticle band structure in correlated systems: LDA + + approach[J]. Phys Rev B,1998,57(12):6884. doi: 10.1103/PhysRevB.57.6884
    [31]
    KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comp Mater Sci,1996,6(1):15−50. doi: 10.1016/0927-0256(96)00008-0
    [32]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865−3868. doi: 10.1103/PhysRevLett.77.3865
    [33]
    MONKHORST H J, PACK J D. Special points for brillonin-zone integrations[J]. Phys Rev B,1976,13(12):5188−5192. doi: 10.1103/PhysRevB.13.5188
    [34]
    SHEPPARD D, XIAO P H, CHEMELEWSKI W, JOHNSON D D, HENKELMAN G. A generalized solid-state nudged elastic band method[J]. J Chem Phys,2012,136(7):074103. doi: 10.1063/1.3684549
    [35]
    SHEPPARD D, TERRELL R, HENKELMAN G. Optimization methods for finding minimum energy paths[J]. J Chem Phys,2008,128(13):134106. doi: 10.1063/1.2841941
    [36]
    OLSEN R A, KROES G J, HENKELMAN G, ARNALDSSON A, JÓNSSON H. Comparison of methods for finding saddle points without knowledge of the final states[J]. J Chem Phys,2004,121(20):9776−9792. doi: 10.1063/1.1809574
    [37]
    HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J Chem Phys,2000,113(22):9901−9904. doi: 10.1063/1.1329672
    [38]
    ALAVI A, HU P J, DEUTSCH T, SLIVESTRELLI P L, HUTTER J. CO oxidation on Pt(111): An ab initio density functional theory study[J]. Phys Rev Lett,1998,80(16):3650−3653. doi: 10.1103/PhysRevLett.80.3650
    [39]
    WANG Z Q, WANG D, GONG X Q. Strategies to improve the activity while maintaining the selectivity of oxidative coupling of methane at La2O3: A density functional theory study[J]. ACS Catal,2020,10(1):586−594. doi: 10.1021/acscatal.9b03066
    [40]
    LI B, METIU H. Dissociation of methane on La2O3 surfaces doped with Cu, Mg, or Zn[J]. J Phys Chem C,2011,115(37):18239−18246. doi: 10.1021/jp2049603
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (223) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return