Volume 51 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LI Guo, ZHANG An-dong, WAN Zhen, LI Zhi-he, WANG Shao-qing, LI Ning, ZHANG Peng. Research progress on catalytic reforming of bio-oil and its derivatives for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 444-457. doi: 10.19906/j.cnki.JFCT.2022061
Citation: LI Guo, ZHANG An-dong, WAN Zhen, LI Zhi-he, WANG Shao-qing, LI Ning, ZHANG Peng. Research progress on catalytic reforming of bio-oil and its derivatives for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 444-457. doi: 10.19906/j.cnki.JFCT.2022061

Research progress on catalytic reforming of bio-oil and its derivatives for hydrogen production

doi: 10.19906/j.cnki.JFCT.2022061
Funds:  The project was supported by National Key Research and Development Program (2019YFD1100602), National Natural Science Foundation of China (52176192) and Shandong Provincial Natural Science Foundation (ZR2021ME035,ZR2021QE132)
  • Received Date: 2022-06-02
  • Accepted Date: 2022-07-14
  • Rev Recd Date: 2022-07-05
  • Available Online: 2022-07-28
  • Publish Date: 2023-04-15
  • Hydrogen is considered to be one of the most desirable clean energy sources and plays an important role in petroleum, chemical, metallurgical, petrochemical, food and fertilizer industries. Steam catalytic reforming of bio-oil for hydrogen production is considered as a promising and economically viable sustainable green hydrogen production technology, which has received a lot of attention from researchers. This paper presents a review of recent research in this field, focusing on the catalytic reforming of bio-oils (bio-crude oil, aqueous bio-oil and heavy bio-oil/tar), bio-oil model compounds (carboxylic acids, alcohols, phenols, etc.) and other bio-oil derivatives for hydrogen production, including the reforming reaction mechanism, reforming process and catalysts. The development of energy-efficient and efficient catalytic reforming reactors and stable and highly active reforming catalysts are the main focus of current and future research and promotion in the field of catalytic reforming of bio-oil for hydrogen production.

  • loading
  • [1]
    YANG Y, YAO J, WANG H, YANG F, WU Z, ZHANG Z. Study on high hydrogen yield for large-scale hydrogen fuel storage and transportation based on liquid organic hydrogen carrier reactor[J]. Fuel,2022,321:124095. doi: 10.1016/j.fuel.2022.124095
    [2]
    ZHONG W, WANG C, PENG S, SHU R, TIAN Z, DU Y, CHN Y. Investigation on the effect of temperature on photothermal glycerol reforming hydrogen production over Ag/TiO2 nanoflake catalyst[J]. Int J Hydrogen Energy,2022,47:16507−16517. doi: 10.1016/j.ijhydene.2022.03.122
    [3]
    GÜR M, CANBAZ E D. Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification[J]. Fuel,2020,269:117331. doi: 10.1016/j.fuel.2020.117331
    [4]
    CABELLO A, MENDIARA T, ABAD A, IZQUIERDO M, GARCÍA-LABIANO F. Production of hydrogen by chemical looping reforming of methane and biogas using a reactive and durable Cu-based oxygen carrier[J]. Fuel,2022,322:124250. doi: 10.1016/j.fuel.2022.124250
    [5]
    ANWAR S, KHAN F, ZHANG Y, DJIRE A. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. Int J Hydrogen Energy,2021,46:32284−32317. doi: 10.1016/j.ijhydene.2021.06.191
    [6]
    陈冠益, 李婉晴, 颜蓓蓓, 单锐, 姚金刚, 马文超. NiFe/CeO2催化剂上乙二醇水相重整制氢[J]. 天津大学学报(自然科学与工程技术版),2017,50(1):7−12.

    CHEN Guan-yi, LI Wan-qing, YAN Bei-bei, DAN Rui, YAO Jin-gang, MA Wen-chao. Hydrogen production by aqueous-phase reforming of ethylene glycol over NiFe/CeO2 catalysts[J]. J Tianjin Univ (Sci Technol),2017,50(1):7−12.
    [7]
    梁昌明, 张安东, 李志合, 李玉峰, 王绍庆, 易维明. 镍基催化剂催化木醋液重整制氢实验研究[J]. 燃料化学学报,2021,49(2):168−177. doi: 10.19906/j.cnki.JFCT.2021016

    LIANG Chang-ming, ZHANG An-dong, LI Zhi-he, LI Yu-feng, WANG Shao-qing, YI Wei-ming. Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst[J]. J Fuel Chem Technol,2021,49(2):168−177. doi: 10.19906/j.cnki.JFCT.2021016
    [8]
    WANG P, XIE H, ZHANG J, JIA L, YU Z, LI R. Optimization of two bio-oil steam reforming processes for hydrogen production based on thermodynamic analysis[J]. Int J Hydrogen Energy,2022,47:9853−9863. doi: 10.1016/j.ijhydene.2022.01.055
    [9]
    AKUBO K, NAHIL M A, WILLIAMS P T. Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas[J]. J Energy Inst,2019,92(6):1987−1996. doi: 10.1016/j.joei.2018.10.013
    [10]
    GAO Z, GAO G, LI C, TIAN H, XU Q, ZHANG S, XU L, HU X. Interaction of the reaction intermediates in co-reforming of acetic acid and ethanol impacts coke properties[J]. Mol Catal,2021,504(2017):111461.
    [11]
    罗泽军, 胡永华, 王雨松, 朱谢飞, 朱锡锋. 重质生物油理化性质及其热解特性研究[J]. 化工学报,2019,70(8):3196−3201.

    LUO Ze-jun, HU Yong-hua, WANG Yu-song, ZHU Xie-fei, ZHU Xi-feng. Physicochemical properties and pyrolysis characteristics of heavy bio-oil[J]. CIESC J,2019,70(8):3196−3201.
    [12]
    HU H S, WU Y L, YANG M D. Fractionation of bio-oil produced from hydrothermal liquefaction of microalgae by liquid-liquid extraction[J]. Biomass Bioenergy,2017,108:487−500.
    [13]
    BIZKARRA K, BERMUDEZ J M, ARCELUS-ARRILLAGA P, BARRIO V L, CAMBRA J F, MILLAN M. Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming[J]. Int J Hydrogen Energy,2018,43(26):11706−11718. doi: 10.1016/j.ijhydene.2018.03.049
    [14]
    CHEN G, YAO J, LIU J, YAN B, SHAN R. Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil[J]. Renewable Energy,2016,91:315−322. doi: 10.1016/j.renene.2016.01.073
    [15]
    李丹萍. Ni/CexZr(1−x)O2-CaO催化剂吸收增强的生物油水蒸气重整制氢的研究[D]. 西安: 陕西师范大学, 2018.

    LI Dan-ping. Study on Ni/CexZr(1−x)O2-CaO catalyst for hydrogen production with enhanced absorption by steam reforming of bio-oil[D]. Xi'an: Shaanxi Normal University, 2018.
    [16]
    GARCÍA-GÓMEZ N, VALECILLOS J, VALLE B, REMIRO A, BILBAO J, GAYUBO A G. G. Combined effect of bio-oil composition and temperature on the stability of Ni spinel derived catalyst for hydrogen production by steam reforming[J]. Fuel,2022,326:124966. doi: 10.1016/j.fuel.2022.124966
    [17]
    YAN C, CHENG F, HU R. Hydrogen production from catalytic steam reforming of bio-oil aqueous fraction over Ni/CeO2-ZrO2 catalysts[J]. Int J Hydrogen Energy,2010,35(21):11693−11399. doi: 10.1016/j.ijhydene.2010.08.083
    [18]
    REMON J, BROUST F, VOLLE G, GARCIA L, ARAUZOA J. Hydrogen production from pine and poplar bio-oils by catalytic steam reforming. Influence of the bio-oil composition on the process[J]. Int J Hydrogen Energy,2015,40:5593−5608. doi: 10.1016/j.ijhydene.2015.02.117
    [19]
    BIMBELA F, ÁBREGO J, PUERTAB R, GARCA L, ARAUZO J. Catalytic steam reforming of the aqueous fraction of bio-oil using Ni-Ce/Mg-Al catalysts[J]. Appl Catal B: Environ,2017,209:346−357. doi: 10.1016/j.apcatb.2017.03.009
    [20]
    YAO D D, WU C F, YANG H P, HU Q, MOHAMAD A N, CHEN H, PAUL T W. Hydrogen production from catalytic reforming of the aqueous fraction of pyrolysis bio-oil with modified Ni-Al catalysts[J]. Int J Hydrogen Energy,2014,39:14642−14652.
    [21]
    REMIRO A, VALLE B, AGUAYO A, BILBAO J, GAYUBO AG. Operating conditions for attenuating Ni/La2O3-αAl2O3 catalyst deactivation in the steam reforming of bio-oil aqueous fraction[J]. Fuel Process Technol,2013,115:222−232. doi: 10.1016/j.fuproc.2013.06.003
    [22]
    张安东, 李志合, 王丽红, 王绍庆, 梁昌明, 万震. 水相生物油原位汽化-催化重整制氢工艺优化[J]. 化工进展,2022,41(3):1340−1348. doi: 10.16085/j.issn.1000-6613.2021-1674

    ZHANG An-dong, LI Zhi-he, WANG Li-hong, WANG Shao-qing, LIANG Chang-ming, WAN Zhen. Optimization of in-situ gasification & catalytic reforming process for hydrogen production from aqueous bio-oil[J]. Chem Ind Eng Prog,2022,41(3):1340−1348. doi: 10.16085/j.issn.1000-6613.2021-1674
    [23]
    GAO N, SALISU J, QUAN C, WILLIAMS P. Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review[J]. Renewable Sustainable Energy Rev,2021,145:111023. doi: 10.1016/j.rser.2021.111023
    [24]
    LI J, LIU Z Y, TIAN Y Y, ZHU Y A, QIN S, QIAO Y Y. Catalytic conversion of gaseous tars using land, coastal and marine biomass-derived char catalysts in a bench-scale downstream combined fixed bed system[J]. Bioresour Technol,2020,304:122735. doi: 10.1016/j.biortech.2020.122735
    [25]
    LIU C L, CHEN D, CAO Y A, ZHANG T X, MAO Y Y, WANG W J, WANG Z G, KAWI S. Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas[J]. Renewable Energy,2020,161:408−418. doi: 10.1016/j.renene.2020.07.089
    [26]
    SOUZA IC, MANFRO RL, SOUZA MM. Hydrogen production from steam reforming of acetic acid over Pt-Ni bimetallic catalysts supported on ZrO2[J]. Biomass Bioenergy,2022,156:106317. doi: 10.1016/j.biombioe.2021.106317
    [27]
    CAKIRYILMAZ N, ARBAG H, OKTAR N, DOGU G, DOGU T. Catalytic performances of Ni and Cu impregnated MCM-41 and Zr-MCM-41 for hydrogen production through steam reforming of acetic acid[J]. Int J Hydrogen Energy,2019,323:191−199.
    [28]
    WANG S, LI X, ZHANG F, CAI Q, WANG Y, LUO Z. Bio-oil catalytic reforming without steam addition: Application to hydrogen production and studies on its mechanism[J]. Int J Hydrogen Energy,2013,38:16038−16047. doi: 10.1016/j.ijhydene.2013.10.032
    [29]
    WANG Y R, SUN K, ZHANG S, XU L L, HU G Z, HU X. Steam reforming of alcohols and carboxylic acids: Importance of carboxyl and alcoholic hydroxyl groups on coke properties[J]. J Energy Inst,2021,98:85−97. doi: 10.1016/j.joei.2021.06.002
    [30]
    CHEN W H, LU C Y, TRAN K Q, LIN Y L, NAQVI S R. A new design of catalytic tube reactor for hydrogen production from ethanol steam reforming[J]. Fuel,2020,281:118746. doi: 10.1016/j.fuel.2020.118746
    [31]
    SOMASREE R, MOHARMED M A, SWATI D, T. SUNDARARAJAN, RAO G. R. Thermochemical hydrogen production using Rh/CeO2/γ-Al2O3 catalyst by steam reforming of ethanol and water splitting in a packed bed reactor[J]. Int J Hydrogen Energy,2021,46:19254−19269. doi: 10.1016/j.ijhydene.2021.03.079
    [32]
    WANG S R, ZHANG F, CAI Q, LI X B, ZHU L J, WANG Q, LUO Z Y. Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst[J]. Int J Hydrogen Energy,2014,39:2018−2025. doi: 10.1016/j.ijhydene.2013.11.129
    [33]
    NAVARRO R M, GUIL L R, J M G C, CUBERO A, ISMAIL A A, S A A S, FIERRO J L G. Bimetallic M-Ni/Al2O3-La catalysts (M=Pt, Cu) for acetone steam reforming: Role of M on catalyst structure and activity[J]. Appl Catal A: Gen,2014,474:168−177. doi: 10.1016/j.apcata.2013.09.056
    [34]
    王东旭, 肖显斌, 李文艳. 乙酸蒸汽催化重整制氢的研究进展[J]. 化工进展,2017,36(5):1658−1655. doi: 10.16085/j.issn.1000-6613.2017.05.014

    WANG Dong-xu, XIAO Xian-bin, LI Wen-yan. A review of literatures on catalytic steam reforming of acetic acid for hydrogen production[J]. Chem Ind Eng Prog,2017,36(5):1658−1655. doi: 10.16085/j.issn.1000-6613.2017.05.014
    [35]
    REZAEI M, CHERMAHINI A N. A DFT study on production of hydrogen from biomass-derived formic acid catalyzed by Pt-TiO2[J]. Int J Hydrogen Energy,2020,45:20993−21003. doi: 10.1016/j.ijhydene.2020.05.198
    [36]
    LI X, XUAN K, ZHU Y, CHEN G, YANG G. A mechanistic study on the decomposition of a model bio-oil compound for hydrogen production over a stepped Ni surface formic acid[J]. Appl Surf Sci,2018,452:87−95. doi: 10.1016/j.apsusc.2018.05.049
    [37]
    LI X, XUE L, ZHU Y, CHEN G, YANG G, WANG S. Mechanistic study of bio-oil catalytic steam reforming for hydrogen production: Acetic acid decomposition[J]. Int J Hydrogen Energy,2018,43:13212−13224. doi: 10.1016/j.ijhydene.2018.05.066
    [38]
    CHEN M, HU J, WANG Y, WANG C, TANG Z, LI C, LIANG D, CHENG W, YANG Z, ZHANG H. Hydrogen production from acetic acid steam reforming over Ti-modified Ni/Attapulgite catalysts[J]. Int J Hydrogen Energy,2021,46:3651−3668. doi: 10.1016/j.ijhydene.2020.10.196
    [39]
    LI X, WANG S, ZHU Y, YANG G, ZHENG P. DFT study of bio-oil decomposition mechanism on a Co stepped surface: Acetic acid as a model compound[J]. Int J Hydrogen Energy,2015,40:330−339. doi: 10.1016/j.ijhydene.2014.11.004
    [40]
    WANG M, ZHANG F, WANG S. Effect of La2O3 replacement on γ-Al2O3 supported nickel catalysts for acetic acid steam reforming[J]. Int J Hydrogen Energy,2017,42:20540−20548. doi: 10.1016/j.ijhydene.2017.06.147
    [41]
    IBRAHIM S A, EKINCI E K, KARAMAN B P, OKTAR N. Coke-resistance enhancement of mesoporous γ-Al2O3 and MgO-supported Ni-based catalysts for sustainable hydrogen generation via steam reforming of acetic acid[J]. Int J Hydrogen Energy,2021,46:38281−38298. doi: 10.1016/j.ijhydene.2021.09.084
    [42]
    CHOI I, HWANG K, LEE K, LEE I. Catalytic steam reforming of biomass-derived acetic acid over modified Ni/γ-Al2O3 for sustainable hydrogen production[J]. Int J Hydrogen Energy,2019,44:180−190. doi: 10.1016/j.ijhydene.2018.04.192
    [43]
    YU H, LIU Y, LIU J, CHEN D. High catalytic performance of an innovative Ni/magnesium slag catalyst for the syngas production and tar removal from biomass pyrolysis[J]. Fuel,2019,254:115622. doi: 10.1016/j.fuel.2019.115622
    [44]
    WANG Z, SUN L, CHEN L, YANG S, XIE X, GAO M, LI T, ZHAO B, SI H, HUA D. Steam reforming of acetic acid for hydrogen production over Ni/CaxFeyO catalysts[J]. Int J Hydrogen Energy,2021,46:33132−33142. doi: 10.1016/j.ijhydene.2021.07.145
    [45]
    PANT K K, MOHANTY P, AGARWAL S, DALAI A K. Steam reforming of acetic acid for hydrogen production over bifunctional Ni-Co catalysts[J]. Catal Today,2013,207:36−43. doi: 10.1016/j.cattod.2012.06.021
    [46]
    LI P, LI X, YUAN Y, WANG Y, SHEN P, ZHU X, ZHU Y. Experimental and DFT studies on catalytic reforming of acetic acid for hydrogen production over B-doped Co/Al2O3 catalysts[J]. Int J Hydrogen Energy,2022,47:7624−7637. doi: 10.1016/j.ijhydene.2021.12.129
    [47]
    XIE H, YU Q, ZUO Z, HAN Z, YAO X, QIN Q. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil[J]. Int J Hydrogen Energy,2016,41(4):2345−2353. doi: 10.1016/j.ijhydene.2015.12.156
    [48]
    方书起, 王毓谦, 李攀, 陈志勇, 陈玮, 白净, 常春. 生物油催化重整制氢研究进展[J]. 化工进展,2022,41(3):1330−1339. doi: 10.16085/j.issn.1000-6613.2021-1954

    FANG Shu-qi, WANG Yu-qian, LI Pan, CHEN Zhi-yong, CHEN Wei, BAI Jing, CHANG Chun. Research progress of hydrogen production by catalytic reforming of bio-oil[J]. Chem Ind Eng Prog,2022,41(3):1330−1339. doi: 10.16085/j.issn.1000-6613.2021-1954
    [49]
    YANG X, WANG S, HE Y. Review of catalytic reforming for hydrogen production in a membrane-assisted fluidized bed reactor[J]. Renewable Sustainable Energy Rev,2022,154:111832. doi: 10.1016/j.rser.2021.111832
    [50]
    HAMMOUD D, GENNEQUIN C, ABOUKAIS A, ABI AAD D E. Hammoud. steam reforming of methanol over x% Cu/Zn-Al 400 500 based catalysts for production of hydrogen: Preparation by adopting memory effect of hydrotalcite and behavior evaluation[J]. Int J Hydrogen Energy,2015,40:1283−1297. doi: 10.1016/j.ijhydene.2014.09.080
    [51]
    ANIL S, INDRAJA S, SINGH R, APPARI S, ROY B. A review on ethanol steam reforming for hydrogen production over Ni/Al2O3 and Ni/CeO2 based catalyst powders[J]. Int J Hydrogen Energy,2022,47:8177−8213. doi: 10.1016/j.ijhydene.2021.12.183
    [52]
    MAMUSI F, FARMANZADEH D. Mechanism of ethanol steam reforming on B12N12 and Al12N12 nano-cages: A theoretical study[J]. Mater Today Commun,2022,30:103014. doi: 10.1016/j.mtcomm.2021.103014
    [53]
    SHAHSAVAR H, TAGHIZADEH M, KIADEHI A D. Effects of catalyst preparation route and promoters (Ce and Zr) on catalytic activity of CuZn/CNTs catalysts for hydrogen production from methanol steam reforming[J]. Int J Hydrogen Energy,2021,46:8906−8921. doi: 10.1016/j.ijhydene.2021.01.010
    [54]
    TAO M, MENG X, LV Y, BIAN Z, XIN Z. Effect of impregnation solvent on Ni dispersion and catalytic properties of Ni/SBA-15 for CO methanation reaction[J]. Fuel,2016,165:289−297. doi: 10.1016/j.fuel.2015.10.023
    [55]
    THYSSEN V V, SARTORE D M, ASSAF E M. Effect of preparation method on the performance of Ni/MgO-SiO2 catalysts for glycerol steam reforming[J]. J Energy Inst,2019,92:947−958. doi: 10.1016/j.joei.2018.07.010
    [56]
    TAGHIZADEH M, ABBANDANAK M H. Production of hydrogen via methanol steam reforming over mesoporous CeO2-Cu/KIT-6 nanocatalyst: Effects of polar aprotic tetrahydrofuran solvent and ZrO2 promoter on catalytic performance[J]. Int J Hydrogen Energy,2022,47:16362−16374. doi: 10.1016/j.ijhydene.2022.03.141
    [57]
    BEPARI S, SARKAR J J, PRADHAN N C. Kinetics of ethanol steam reforming over Ni/Olivine catalyst[J]. Int J Hydrogen Energy,2022,47:30843−30860.
    [58]
    ELHARATI M A, LEE K, HWANG S, HUSSAIN A M, MIURA Y, DONG S, FUKUYAMA Y, DALE N, SAUNDERS S, KIM T, HA S. The effect of silica oxide support on the catalytic activity of nickel-molybdenum bimetallic catalyst toward ethanol steam reforming for hydrogen production[J]. Chem Eng J,2022,441:135916. doi: 10.1016/j.cej.2022.135916
    [59]
    CHEN M, LIANG D, WANG Y, WANG C, TANG Z, LI C, HU J, CHENG W, YANG Z, ZHANG H, WANG J. Hydrogen production by ethanol steam reforming over M-Ni/sepiolite (M = La, Mg or Ca) catalysts[J]. Int J Hydrogen Energy,2021,46:21796−21811. doi: 10.1016/j.ijhydene.2021.04.012
    [60]
    VACHARAPONG P, ARAYAWATE S, KATANYUTANON S, TOOCHINDA P, LAWTRAKUL L, CHAROJROCHKUL S. Enhancement of Ni catalyst using CeO2-Al2O3 support prepared with magnetic inducement for ESR[J]. Catalysts,2020,10:1357. doi: 10.3390/catal10111357
    [61]
    CHEN M, WANG C, WANG Y, TANG Z, YANG Z, ZHANG H, WANG J. Hydrogen production from ethanol steam reforming: Effect of Ce content on catalytic performance of Co/sepiolite catalyst[J]. Fuel,2019,247:344−355. doi: 10.1016/j.fuel.2019.03.059
    [62]
    LAY?OZKAN G, SAHBUDAKB B, OZKAN G. Effect of molar ratio of water/ethanol on hydrogen selectivity in catalytic production of hydrogen using steam reforming of ethanol[J]. Int J Hydrogen Energy,2019,44:9823−9829. doi: 10.1016/j.ijhydene.2018.11.198
    [63]
    XU Q, ZHANG Z, LIAO L, LAN P, WANG R, CHEN S, LI P, ZHANG C. Hydrogen production by glycerol reforming in a two-fixed-bed reactor[J]. Int J Hydrogen Energy,2022,47:16805−16814. doi: 10.1016/j.ijhydene.2022.03.105
    [64]
    MONDALA T, PANTA K K, DALAIB A K. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst[J]. Int J Hydrogen Energy,2015,40:2529−2544. doi: 10.1016/j.ijhydene.2014.12.070
    [65]
    BAAMRAN K S, TAHIR M, MOHAMED M, KHOJA A H. Effect of support size for stimulating hydrogen production in phenol steam reforming using Ni-embedded TiO2 nanocatalyst[J]. J Environ Eng,2020,8(1):103604.
    [66]
    GAO K, SAHRAEI O A, ILIUTA M C. Development of residue coal fly ash supported nickel catalyst for H2 production via glycerol steam reforming[J]. Appl Catal B: Environ,2021,291:119958. doi: 10.1016/j.apcatb.2021.119958
    [67]
    WANG X, HE Y, XU T, XIAO B, LIU S, HU Z, LI J. CO2 sorption-enhanced steam reforming of phenol using Ni–M/CaO–Ca12Al14O33(M = Cu, Co, and Ce) as catalytic sorbents[J]. Chem Eng J,2020,393:124769. doi: 10.1016/j.cej.2020.124769
    [68]
    NABGAN W, ABDULLAH T A T, MAT R, NABGAN B, TRIWAHYONO S, RIPIN A. Hydrogen production from catalytic steam reforming of phenol with bimetallic nickel-cobalt catalyst on various supports[J]. Appl Catal A: Gen,2016,527:161−170. doi: 10.1016/j.apcata.2016.08.033
    [69]
    XU Y, ZHU Y, SHEN P, CHEN G, LI X. Production of hydrogen by steam reforming of phenol over Ni/Al2O3-ash catalysts[J]. Int J Hydrogen Energy,2022,47(28):13592−13603. doi: 10.1016/j.ijhydene.2022.02.097
    [70]
    刘嘉辉, 孙道安, 杜咏梅, 李春迎, 刘昭铁, 吕剑. 芳烃蒸汽催化重整制氢研究进展[J]. 化工进展,2021,40(9):4782−4790. doi: 10.16085/j.issn.1000-6613.2021-0452

    LIU Jia-hui, SUN Dao-an, DU Yong-mei, LI Chun-ying, LIU Zhao-tie, LV Jian. Progress on hydrogen production from catalytic steam reforming of aromatic hydrocarbons[J]. Chem Ind Eng Prog,2021,40(9):4782−4790. doi: 10.16085/j.issn.1000-6613.2021-0452
    [71]
    ZHANG Z, QIN C, OU Z, XIA H, RAN J, WU C. Experimental and thermodynamic study on sorption-enhanced steam reforming of toluene for H2 production using the mixture of Ni/ perovskite-CaO[J]. Fuel,2021,305:121447. doi: 10.1016/j.fuel.2021.121447
    [72]
    SAYAS S, COSTA-SERRA J F D, CHICA A. Sustainable production of hydrogen via steam reforming of furfural (SRF) with Co-catalyst supported on sepiolite[J]. Int J Hydrogen Energy,2021,46:17481−17489. doi: 10.1016/j.ijhydene.2020.04.185
    [73]
    ZHANG A, LI Z, YI W, WANG L, WANG S, LIANG C, WAN Z. Reaction mechanism of in-situ vaporization catalytic reforming of aqueous bio-oil for hydrogen production[J]. Int J Hydrogen Energy,2021,47:7005−7015.
    [74]
    MA Z, XIAO R, ZHANG H. Catalytic steam reforming of bio-oil model compounds for hydrogen-rich gas production using bio-char as catalyst[J]. Int J Hydrogen Energy,2017,42:3579−3585. doi: 10.1016/j.ijhydene.2016.11.107
    [75]
    MA J, JIANG B, LI L, YU K, ZHANG Q, LV Z, TANG D. A high temperature tubular reactor with hybrid concentrated solar and electric heat supply for steam methane reforming[J]. Chem Eng J,2022,428:132073. doi: 10.1016/j.cej.2021.132073
    [76]
    ZHAO Q, WANG Y, WANG Y, LI L, ZENG W, LI G, HU C. Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: Effect of H2O/CH4 ratio on carbon deposition[J]. Int J Hydrogen Energy,2020,45:14281−14292. doi: 10.1016/j.ijhydene.2020.03.112
    [77]
    SHAHED G V, TAHERIAN Z, KHATAEE A, MESHKANI F, OROOJI Y. Samarium-impregnated nickel catalysts over SBA-15 in steam reforming of CH4 process[J]. J Ind Eng Chem,2020,86:73−80. doi: 10.1016/j.jiec.2020.02.012
    [78]
    DONG S C, JIYUII K, NA Y K, JI B J. Control of textural property in spherical alumina ball for enhanced catalytic activity of Ni-supported Al2O3 catalyst in steam–methane reforming[J]. J Ind Eng Chem,2022,108:400−410.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1205) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return