Volume 51 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
XU Xin-rong, WU Hao, YU Le-meng, ZHUANG Ke, TANG Guang-hua, YANG Hong-min. Regeneration characteristics of Ca-poisoned commercial selective catalytic reduction denitrification catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 502-510. doi: 10.19906/j.cnki.JFCT.2022068
Citation: XU Xin-rong, WU Hao, YU Le-meng, ZHUANG Ke, TANG Guang-hua, YANG Hong-min. Regeneration characteristics of Ca-poisoned commercial selective catalytic reduction denitrification catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 502-510. doi: 10.19906/j.cnki.JFCT.2022068

Regeneration characteristics of Ca-poisoned commercial selective catalytic reduction denitrification catalyst

doi: 10.19906/j.cnki.JFCT.2022068
Funds:  The project was supported by the National Natural Science Foundation of China (51676101), the Natural Science Foundation of Jiangsu Province (BK20161558) and the Social Development of Jiangsu Province General Project (BE2020754).
  • Received Date: 2022-06-24
  • Accepted Date: 2022-08-03
  • Rev Recd Date: 2022-07-31
  • Available Online: 2022-08-11
  • Publish Date: 2023-04-15
  • Alkaline earth metal calcium is a typical poison in coal-fired power plants, which will result in deactivation of SCR catalyst. The ATMP (amino trimethylene phosphonic acid) and PBTCA (2-phosphonobutane-1,2,4-tricarboxylic acid) complexing agents were employed for the regeneration of a poisoned by calcium V2O5-WO3/TiO2 catalyst. The physical and chemical properties and regeneration denitration performance of the catalyst before and after regeneration were investigated by BET, NH3-TPD, H2-TPR, XPS and experiments. The results indicated that the ATMP and PBTCA exhibited efficient regeneration performance, and the NOx conversion of regenerating catalysts recovered from 25.8% to 89.8% and 88.1% at 400 ℃, respectively. Compared with the regeneration by dilute sulfuric acid, the ATMP and PBTCA exhibited a higher calcium removal rate with lower vanadium loss (less than 5%). The utilization of the ATMP and PBTCA can effectively restore the Brønsted acid sites, active vanadium V5 + and the surface chemisorbed oxygen Oα on the catalyst surface, which leads to the overall activity of the catalyst reaching an optimal level. Therefore, it has a great potential to apply ATMP and PBTCA complexing agents in the regeneration of deactivated SCR denitration catalysts.

  • loading
  • [1]
    LI J H, PENG Y, CHANG H Z, LI X, CRITTENDEN J. HAO J M. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front Environ Sci Eng,2016,10(3):413−427. doi: 10.1007/s11783-016-0832-3
    [2]
    ZHANG D J, WANG C J, LIU Q Y, LIU Z Y, LEI T Y, WANG B D. The combined effects of alkaline-earth metal. SO2 and CO2 on the selective catalytic reduction of NO by NH3 over V2O5-WO3/TiO2 catalyst[J]. Environ Technol Innov,2019,14:100331. doi: 10.1016/j.eti.2019.100331
    [3]
    LI X, LI X S, LI J H. HAO J M. High calcium resistance of CeO2-WO3 SCR catalysts: Structure investigation and deactivation analysis[J]. Chem Eng J,2017,317:70−79. doi: 10.1016/j.cej.2017.02.027
    [4]
    LI X, LI X S, YANG R T, MO J S, LI J H. HAO J M. The poisoning effects of calcium on V2O5-WO3/TiO2 catalyst for the SCR reaction: Comparison of different forms of calcium[J]. Mol Catal,2017,434:16−24. doi: 10.1016/j.mcat.2017.01.010
    [5]
    ZHANG Q J, WU Y F. YUAN H R. Recycling strategies of spent V2O5-WO3/TiO2 catalyst: A review[J]. Res Conserv Recycl,2020,161:104983. doi: 10.1016/j.resconrec.2020.104983
    [6]
    CHEN L, LI J H, GE M F. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J,2011,170(2/3):531−537.
    [7]
    樊雪. 含Ca化合物对钒钛基SCR催化剂脱硝活性的影响[D]. 北京: 北京化工大学, 2016.

    FAN Xue. Influence of Ca-based compounds on SCR activity of V2O5-WO3/TiO2 catalyst[D]. Beijing: Beijing University of Chemical Technology, 2016.
    [8]
    崔力文, 宋浩, 吴卫红, 杜学森, 纪培栋, 高翔, 骆仲泱, 岑可法. 电站失活SCR催化剂再生试验研究[J]. 能源工程,2012,(3):43−46.

    CUI Wen-li, SONG Hao, WU Wei-hong, DU Xue-shen, JI Pei-dong, GAO Xiang, LUO Zhong-yang, CEN Ke-fa. A research on the regeneration of deactivated SCR catalyst used in coal-fired plant[J]. Energy Eng,2012,(3):43−46.
    [9]
    LI X S, LIU C D, LI X, PENG Y. LI J H. A neutral and coordination regeneration method of Ca-poisoned V2O5-WO3/TiO2 SCR catalyst[J]. Catal Commun,2017,100:112−116. doi: 10.1016/j.catcom.2017.06.034
    [10]
    周凯, 李国波, 陆斌, 陆斌, 王圣, 张亚平, 滕玉婷, 李娟. 失活V2O5-WO3/TiO2 SCR 脱硝催化剂的再生方法[J]. 硅酸盐学报,2019,47(7):916−923.

    ZHOU Kai, LI Guo-bo, LU Bin, WANG Sheng, ZHANG Ya-ping, TENG Yu-ting, LI Juan. Regeneration of deactivated V2O5-WO3/TiO2 selective catalytic reduction denitration catalyst[J]. J Chin Ceram Soc,2019,47(7):916−923.
    [11]
    LI X, LI X S, CHEN J J, LI J H. HAO J M. An efficient novel regeneration method for Ca-poisoning V2O5-WO3/TiO2 catalyst[J]. Catal Commun,2016,87:45−48. doi: 10.1016/j.catcom.2016.06.017
    [12]
    夏明珠, 雷武, 戴林宏, 褚玉婷, 王风云等. 膦系阻垢剂对碳酸钙阻垢机理的研究[J]. 化学学报,206,68(2):143−148.

    XIA Ming-zhu, LEI Wu, DAI Lin-hong, WANG Feng-yun. Study of the mechanism of phosphonate scale inhibitors against calcium carbonate scale[J]. Acta Chim Sin,206,68(2):143−148.
    [13]
    ZHENG Y J, JENSEN A D, JOHNSSON J E. Deactivation of V2O5-WO3/TiO2 SCR catalyst at a biomass-fired combined heat and power plant[J]. Appl Catal B: Environ, 2005, 60(3/4): 253−264.
    [14]
    GUO Y Y, XU X F, GAO H, ZHENG Y, LUO L L. ZHU T Y. Ca-Poisoning effect on V2O5-WO3/TiO2 and V2O5-WO3-CeO2/TiO2 catalysts with different vanadium loading[J]. Catalysts,2021,11(4):445. doi: 10.3390/catal11040445
    [15]
    蒋威宇. V2O5-WO3/TiO2催化剂协同净化NOx与氯代芳香化合物的反应特征与副产物研究[D]. 杭州: 浙江大学, 2020.

    JIANG Wei-yu. Reaction characteristics and byproducts analyses over V2O5-WO3/TiO2 catalyst in the synergistic elimination of NOx and chloroaromatics[D]. Hangzhou: Zhejiang University, 2020.
    [16]
    沈伯雄, 卢凤菊, 高兰君, 岳时吉. 中温商业SCR催化剂碱和碱土中毒特性研究[J]. 燃料化学学报,2016,44(4):500−506.

    SHEN Bo-xiong, LU Feng-ju, GAO Lan-jun, YUE Shi-ji. Study on alkali and alkaline earths poisoning characteristics for a commercial SCR catalyst[J]. J Fuel Chem Technol,2016,44(4):500−506.
    [17]
    杜学森. 钛基SCR脱硝催化剂中毒失活及抗中毒机理的实验和分子模拟研究[D]. 杭州: 浙江大学, 2014.

    DU Xue-sen. An experimental and theoretical study on the anti-poisoning of the titania-based SCR catalyst[D]. Hangzhou: Zhejiang University, 2014.
    [18]
    何德良, 任慧莺, 朱天时, 张勤, 陶莉. V2O5-WO3/TiO2 SCR催化剂的钙中毒机理研究[J]. 应用基础与工程科学学报,2018,26(1):1−11.

    HE De-liang, REN Hui-ying, ZHU Tian-shi, ZHANG Qin, TAO Li. Study on calcium poisoning mechanism of V2O5-WO3/TiO2 SCR catalyst[J]. J Basic Sci Eng,2018,26(1):1−11.
    [19]
    LI J X, ZHANG P, CHEN L, ZHANG Y J, QI L Q. Regeneration of selective catalyst reduction catalysts deactivated by Pb. As, and alkali metals[J]. ACS Omega,2020,5(23):13886−13893. doi: 10.1021/acsomega.0c01283
    [20]
    LI J Y, TANG X L, GAO F Y, YI H H. ZHAO S Z. Studies on the calcium poisoning and regeneration of commercial De-NOx SCR catalyst[J]. Chem Pap,2017,71(10):1921−1928. doi: 10.1007/s11696-017-0186-8
    [21]
    WANG X X, MA H Y, SHI Y, WANG Q L, XU P L, LI W. LI S J. Regeneration of alkali poisoned TiO2-based catalyst by various acids in NO selective catalytic reduction with NH3[J]. Fuel,2021,285:119069. doi: 10.1016/j.fuel.2020.119069
    [22]
    WANG D, LUO J M, YANG Q L, YAN J C, ZHANG K H, ZHANG W Q, PENG Y, LI J H. CRITTENDEN J. Deactivation mechanism of multipoisons in cement furnace flue gas on selective catalytic reduction catalysts[J]. Environ Sci Technol,2019,53(12):6937−6944. doi: 10.1021/acs.est.9b00337
    [23]
    MIAO J F, YI X F, SU Q F, LI H R, CHEN J S. WANG J X. Poisoning effects of phosphorus, potassium and lead on V2O5-WO3/TiO2 catalysts for selective catalytic reduction with NH3[J]. Catalysts,2020,10(3):345. doi: 10.3390/catal10030345
    [24]
    ALI Z, LU Q, IQBAL T, ARAIN Z, HAN J, WU Y W, LIU D J. YANG Y P. Poisoning effects of lead species on the V2O5-WO3/TiO2 type NH3-selective catalytic reduction catalyst[J]. Asia-Pac J Chem Eng,2019,14(3):e2309. doi: 10.1002/apj.2309
    [25]
    LI M Y, ZENG Y Q, ZHANG S L, REN Y J, DEND L F, ZHONG Q. Inhibition effect of naphthalene on V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR of NOx[J]. Fuel,2022,322:124157. doi: 10.1016/j.fuel.2022.124157
    [26]
    ZHANG B L, DENG L F, LIEBAU M, WANG P Q, REN Y J, LIU B, LUO C Y, GLASER R. ZHANG S G. Tar induced deactivation and regeneration of a commercial V2O5-MoO3/TiO2 catalyst during selective catalytic reduction of NO with NH3[J]. Fuel,2022,316:123324. doi: 10.1016/j.fuel.2022.123324
    [27]
    KAPKOWSKI M, SIUDYGA T, SITKO R, NIEMCZYK-WOJDYLA A, ZELENKA T, ZELENKOVA G, GOLBA S, SMOLINSKI A. POLANSKI P. Toward a viable ecological method for regenerating a commercial SCR catalyst-Selectively leaching surface deposits and reconstructing a pore landscape[J]. J Clean Prod,2021,316:128291. doi: 10.1016/j.jclepro.2021.128291
    [28]
    WANG Q L, WANG R, HUANG X N. SHI H C. Sulfur/water resistance and regeneration of MnOx-CeO2/TiO2 catalyst for low-temperature selective catalytic reduction of NOx[J]. JECE,2022,10(2):107345.
    [29]
    ZHANG H D, KONG M, CAI Z L, JIANG L J, LIU Q C, YANG J, REN S, LI J L, DUAN M H. Synergistic effect of arsenic and different potassium species on V2O5-WO3/TiO2 catalyst poisoning: Comparison of ClSO42− and NO3− anions[J]. Catal Commun,2020,144:106069. doi: 10.1016/j.catcom.2020.106069
    [30]
    TOPSØE N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy[J]. Science,1994,265(5176):1217−1219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (748) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return