Volume 51 Issue 5
May  2023
Turn off MathJax
Article Contents
LIANG Li-ping, LIU Xue-qin, GAO Xu-zhou, SHI Shu-ping, SU Ning-jing, LI Guo-min. Recycling of red mud to Fe/C-based composite microwave absorbents by coal gasification semi-coke[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 703-710. doi: 10.19906/j.cnki.JFCT.2022073
Citation: LIANG Li-ping, LIU Xue-qin, GAO Xu-zhou, SHI Shu-ping, SU Ning-jing, LI Guo-min. Recycling of red mud to Fe/C-based composite microwave absorbents by coal gasification semi-coke[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 703-710. doi: 10.19906/j.cnki.JFCT.2022073

Recycling of red mud to Fe/C-based composite microwave absorbents by coal gasification semi-coke

doi: 10.19906/j.cnki.JFCT.2022073
Funds:  The project was supported by the National Nature Science Foundation of China (51802212), the National College Students’ Innovation and Entrepreneurship Training Program (2021465) and China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect (ZBKF2022030802).
  • Received Date: 2022-06-24
  • Accepted Date: 2022-09-13
  • Rev Recd Date: 2022-09-13
  • Available Online: 2022-09-26
  • Publish Date: 2023-05-15
  • Fe/C-based composite microwave absorption (MA) materials were prepared by high temperature solid phase reaction between coal hydrogasification semi-coke (SC for short) and solid waste red mud (RM). In order to optimize MA performance, initial system composition was changed. It was found that, under an argon atmosphere and reaction temperature of 900 ℃, the composites obtained from systems with mass ratio of SC to RM (MRSR) at 0.4∶1−0.7∶1 all showed excellent performance, and that corresponding to MRSR of 0.6∶1 was the best. At a coating thickness of 1.5 mm, the simulated minimum reflection loss and effective absorption bandwidth could reach −48.3 dB and 4.6 GHz, respectively. The strong intrinsic attenuation ability mainly resulted from the dielectric loss due to the presence of graphite carbon as well as a large number of phase boundaries and defects. And the impedance matching between material and free space was attributed to the effective regulation on electromagnetic parameters of the initial system composition. Moreover, the solid phase combination reaction among Na2O, Al2O3 and SiO2 could weaken the strong alkalinity caused by RM.
  • loading
  • [1]
    WANG B L, WU Q, FU Y G, LIU T. A review on carbon/magnetic metal composites for microwave absorption[J]. J Mater Sci Technol,2021,86:91−109. doi: 10.1016/j.jmst.2020.12.078
    [2]
    MENG X, YANG W W, HAN G H, YU Y S, MA S, LIU W, ZHANG Z D. Three-dimensional foam-like Fe3O4@C core-shell nanocomposites: Controllable synthesis and wideband electromagnetic wave absorption properties[J]. J Magn Magn Mater,2020,502:166518. doi: 10.1016/j.jmmm.2020.166518
    [3]
    MENG X, LEI W J, YANG W W, LIU Y Q, YU Y S. Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance[J]. J Colloid Interf Sci,2021,600:382−389. doi: 10.1016/j.jcis.2021.05.055
    [4]
    MENG X, HE L, LIU Y Q, YU Y S, YANG W W. Carbon-coated defect-rich MnFe2O4/MnO heterojunction for high-performance microwave absorption[J]. Carbon,2022,194:207−219. doi: 10.1016/j.carbon.2022.03.075
    [5]
    CHE R C, PENG L M, DUAN X F, CHEN Q, LIANG X L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes[J]. Adv Mater,2004,16(5):401−405. doi: 10.1002/adma.200306460
    [6]
    CHE R C, ZHI C Y, LIANG C Y, ZHOU X G. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite[J]. Appl Phys Lett,2006,88(3):033105. doi: 10.1063/1.2165276
    [7]
    WANG X Y, LU Y K, ZHU T, CHANG S C, WANG W. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption[J]. Chem Eng J,2020,388:124317. doi: 10.1016/j.cej.2020.124317
    [8]
    XU J D, LI R S, JI S R, ZHAO B C, CUI T R, TAN X C, GOU G Y, JIAN J M, XU H K, QIAO Y C, YANG Y, ZHANG S, REN T L. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications[J]. ACS Nano,2021,15:8907−8918. doi: 10.1021/acsnano.1c01552
    [9]
    胡正浪, 吴海华, 杨增辉, 姜建堂, 周建新. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报,2022,39(7):3310−3323.

    HU Zheng-lang, WU Hai-hua, YANG Zeng-hui, JIANG Jian-tang, ZHOU Jian-xin. Preparation and microwave absorbing properties of grapheme-iron-nickel alloy-poly(lactic acid) composites[J]. Acta Mater Compos Sin,2022,39(7):3310−3323.
    [10]
    QIAO M T, LEI X F, MA Y, TIAN L D, HE X W, SU K H, ZHANG Q Y. Application of yolk-shell Fe3O4@n-doped carbon nanochains as highly effective microwave-absorption material[J]. Nano Res,2018,11(3):1500−1519. doi: 10.1007/s12274-017-1767-0
    [11]
    ZHOU P P, WANG X K, WANG L X, ZHANG J, SONG Z, QIU X, YU M X, ZHANG Q T. Walnut shell-derived nanoporous carbon@Fe3O4 composites for outstanding microwave absorption performance[J]. J Alloys Compd,2019,805:1071−1080. doi: 10.1016/j.jallcom.2019.07.177
    [12]
    WANG L F, GUAN H T, SU S L, HU J Q, WANG Y D. Magnetic FeOx/biomass carbon composites with broadband microwave absorption properties[J]. J Alloy Compd,2022,903:163894. doi: 10.1016/j.jallcom.2022.163894
    [13]
    GUAN H T, WANG Q Y, WU X F, PANG J, JIANG Z Y, CHEN G, DONG C J, WANG L H, GONG C H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials[J]. Compos Part B,2021,207:108562. doi: 10.1016/j.compositesb.2020.108562
    [14]
    YANG T Z, QIAN T, WANG M F, SHEN X W, XU N, SUN Z Z, YAN C L. A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets or efficient sodium ion batteries[J]. Adv Mater,2016,28:539−545. doi: 10.1002/adma.201503221
    [15]
    PANG X N, YE L D, LI X J, YAN B H, ZHANG J L, YANG X. Magnetic core-shell structure insitu encapsulated in bamboo-derived carbon skeleton for efficient microwave absorption[J]. J Alloys Compd,2021,888:161510. doi: 10.1016/j.jallcom.2021.161510
    [16]
    GAO S T, ZHANG Y C, LI H X, HE J, XU H, WU C L. The microwave absorption properties of residual carbon from coal gasification fine slag[J]. Fuel,2021,290:120050. doi: 10.1016/j.fuel.2020.120050
    [17]
    GAO S T, CHEN L W, ZHANG Y C, SHAN J F. Fe nanoparticles decorated in residual carbon from coal gasification fine slag as an ultra-thin wideband microwave absorber[J]. Compos Sci Technol,2021,213:108921. doi: 10.1016/j.compscitech.2021.108921
    [18]
    LI G M, MAO L T, ZHU B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. The novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8:14238−14245. doi: 10.1039/D0TC03633A
    [19]
    ZHU B S, TIAN Y M, LIANG L P, WANG Y K, MAO L T, GAO F, ZHANG K W, LI G M. Two-tep preparation of fly ash-based composites for microwave absorption[J]. Int J Appl Ceram Technol,2021,18:1043−1051. doi: 10.1111/ijac.13700
    [20]
    GAO F, LI Y Y, MAO L T, WANG Y K, ZHU B S, LIANG L P, LI G M. Facile synthesis of Co/SC microwave absorbents by recycling coal hydrogasification residue[J]. Mater Lett,2022,308:131168. doi: 10.1016/j.matlet.2021.131168
    [21]
    ZHANG J Z, YAO Z Y, WANG K, WANG F, JIANG H G, LIANG M, WEI J W, AIREY G. Sustainable utilization of bauxite residue (Red Mud) as a road material in pavements: A critical review[J]. Constr Build Mater,2021,270:121419. doi: 10.1016/j.conbuildmat.2020.121419
    [22]
    KHAIRUL MA, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resour Conserv Recycl,2019,141:483−498. doi: 10.1016/j.resconrec.2018.11.006
    [23]
    LIU X, HAN Y X, HE F Y, GAO P, YUAN S. Characteristic, hazard and iron recovery technology of red mud − A critical review[J]. J Hazard Mater,2021,420:126542.
    [24]
    SAHU M K, PATEL R K. Methods for utilization of red mud and its management[C]//Prasad M N V, Shih Kaimin. Environmental Materials and Waste. London: Elsevier Inc. , 2016, 485−524.
    [25]
    叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 2版. 北京: 冶金工业出版社, 2002, 1−24.

    YE Da-lun, HU Jian-hua. Data Manual for Practical Inorganic Thermodynamics[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2002, 1−24.
    [26]
    薛生国, 李晓飞, 孔祥峰, 吴川, 李义伟, 李萌, 李楚璇. 赤泥碱性调控研究进展[J]. 环境科学学报,2017,37(8):2815−2828. doi: 10.13671/j.hjkxxb.2017.0144

    XUE Sheng-guo, LI Xiao-feng, KONG Xiang-feng, WU Chuan, LI Yi-wei, LI Meng, LI Chu-xuan. Alkaline regulation of bauxite residue: A comprehensive review[J]. Acta Scien Circum,2017,37(8):2815−2828. doi: 10.13671/j.hjkxxb.2017.0144
    [27]
    FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61:14095. doi: 10.1103/PhysRevB.61.14095
    [28]
    WANG X X, ZHANG M, SHU J C, WEN B, CAO W Q, CAO M S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response[J]. Carbon,2021,184:136−145. doi: 10.1016/j.carbon.2021.07.099
    [29]
    YAN J, HUANG Y, CHEN C, LIU X D, LIU H. The 3D CoNi alloy particles embedded in N-doped porous carbon foams for high-performance microwave absorbers[J]. Carbon,2019,152:545−555. doi: 10.1016/j.carbon.2019.06.064
    [30]
    CAO M S, SHU J C, WEN B, WANG X X, CAO W Q. Genetic dielectric genes inside 2D carbon-based materials with tunable electromagnetic function at elevated temperature[J]. Small Struct,2021,2:2100104. doi: 10.1002/sstr.202100104
    [31]
    DENG Z M, LI Y, ZHANG H B, ZHANG Y, LUO J Q, LIU L X, YU Z Z. Lightweight Fe@C hollow microspheres with tunable cavity for broadband microwave absorption[J]. Composites Part B,2019,177:107346. doi: 10.1016/j.compositesb.2019.107346
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (241) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return