Volume 51 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
LIU Fei, YANG Bei-bei, MA Xin-yu, LI Ping, YAN Fei, FU Dong. Preparation and electrochemical properties of La0.5Sr0.5Co0.2Fe0.8O3 oxides as bifunctional catalysts for reversible single-component cells[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 852-862. doi: 10.19906/j.cnki.JFCT.2022080
Citation: LIU Fei, YANG Bei-bei, MA Xin-yu, LI Ping, YAN Fei, FU Dong. Preparation and electrochemical properties of La0.5Sr0.5Co0.2Fe0.8O3 oxides as bifunctional catalysts for reversible single-component cells[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6): 852-862. doi: 10.19906/j.cnki.JFCT.2022080

Preparation and electrochemical properties of La0.5Sr0.5Co0.2Fe0.8O3 oxides as bifunctional catalysts for reversible single-component cells

doi: 10.19906/j.cnki.JFCT.2022080
Funds:  The project was supported by the National Natural Science Foundation of China (52102246), Natural Science Foundation of Hebei Province (B2020502002 and B2020502003), and the Fundamental Research Funds for the Central Universities (2020MS124, 2020MS126)
  • Received Date: 2022-09-09
  • Accepted Date: 2022-11-03
  • Rev Recd Date: 2022-11-01
  • Available Online: 2022-11-08
  • Publish Date: 2023-06-15
  • La0.5Sr0.5Co0.2Fe0.8O3 (LSCF) perovskite materials were prepared by hard template method with SBA-15 as the template in methanol and ethanol solvents and the electrochemical properties of LSCF were investigated. It is found that LSCF prepared with ethanol solvent has larger specific surface area and more oxygen vacancy concentration, which in turn exhibits higher electrical conductivity and better catalytic activity towards oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR). This is because the LSCF prepared by the ethanol solvent has more Co2 + /Co3 + and Fe2 + /Fe3 + electron pairs, which promotes the electronic conduction of the material. In addition, for HOR, the rate determining step (RDS) is the transfer of adsorbed H to the reaction site, and for ORR, the RDS is the reduction of the adsorbed oxygen atom on LSCF. In addition, the reversible single-component cell (RSCC) composed of LSCF prepared by ethanol solvent shows better performance for discharge and water electrolysis. The maximum power density (Pmax) of the RSCC is 232.9 mW/m2, and the current density at 1.3 V is −398.3 mA/cm2 at 700 ℃.
  • loading
  • [1]
    GUO Y, GUO T, ZHOU S, WU Y, CHEN H, OU X, LING Y. Characterization of Sr2Fe 1.5Mo0.5O6-δ-Gd0.1Ce0.9O1.95 symmetrical electrode for reversible solid oxide cells[J]. Ceram Int,2019,45(8):10969−10975. doi: 10.1016/j.ceramint.2019.02.179
    [2]
    LUO Y, SHI Y, LI W, CAI N. Mechanism of rate-limiting step switchover for reversible solid oxide cells in H2/H2O atmosphere[J]. Electrochim Acta,2019,326:135003. doi: 10.1016/j.electacta.2019.135003
    [3]
    QIU P, YANG X, WANG W, WEI T, CHEN F. Redox-Reversible Electrode Material for Direct Hydrocarbon Solid Oxide Fuel Cells[J]. ACS Appl Mater Interfaces,2020,12(12):13988−13995. doi: 10.1021/acsami.0c00922
    [4]
    ZHENG Y, WANG S, PAN Z, YIN B. Electrochemical CO2 reduction to CO using solid oxide electrolysis cells with high-performance Ta-doped bismuth strontium ferrite air electrode[J]. Energy,2021,228:120579. doi: 10.1016/j.energy.2021.120579
    [5]
    KIM Y, YANG J, SAQIB M, PARK K, SHIN J, JO M, PARK K, LIM H, SONG S, PARK J. Cobalt-free perovskite Ba1-xNdxFeO3-δ air electrode materials for reversible solid oxide cells[J]. Ceram Int,2021,47(6):7985−7993. doi: 10.1016/j.ceramint.2020.11.149
    [6]
    EBBESEN S, JENSEN S H, HAUCH A, MOGENSEN M B. High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells[J]. Chem Rev,2014,114(21):10697−10734. doi: 10.1021/cr5000865
    [7]
    ZHENG Y, WANG J, YU B, ZHANG W, CHEN J, QIAO J, ZHANG J. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology[J]. Chem Soc Rev,2017,46(5):1427−1463.
    [8]
    HANIF M B, MOTOLA M, QAYYUM S, RAUF S, KHALID A, LI C J, LI C X. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chem Eng J,2022,428:132603. doi: 10.1016/j.cej.2021.132603
    [9]
    WANG Y, LIU T, LEI L, CHEN F. High temperature solid oxide H2O/CO2 co-electrolysis for syngas production[J]. Fuel Process Technol,2017,161:248−258. doi: 10.1016/j.fuproc.2016.08.009
    [10]
    SHEN L, DU Z, ZHANG Y, DONG X, ZHAO H. Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3−δ as promising cathodes for intermediate temperature solid oxide fuel cell[J]. Appl Catal B: Environ,2021,295:120264. doi: 10.1016/j.apcatb.2021.120264
    [11]
    SHAO K, LI F, ZHANG G, ZHANG Q, MALIUTINA K, FAN L. Approaching durable single-layer fuel cells: Promotion of electroactivity and charge separation via nanoalloy redox exsolution[J]. ACS Appl Mater Inter,2019,11(31):27924−27933. doi: 10.1021/acsami.9b08448
    [12]
    ZHAO Y, HE Y, FAN L, HE J, XIONG D B, GAO F, ZHU B. Synthesis of hierarchically porous LiNiCuZn-oxide and its electrochemical performance for low-temperature fuel cells[J]. Int J Hydrogen Energy,2014,39(23):12317−12322. doi: 10.1016/j.ijhydene.2014.03.087
    [13]
    HU H Q, LIN Q Z, ZHU Z G, ZHU B, LIU X R. Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2O2-delta-Li0.3Ni0.6Cu0.07Sr0.03O2-delta layer[J]. J Power Sources,2014,248:577−581. doi: 10.1016/j.jpowsour.2013.09.095
    [14]
    LI P, YANG P, SHAO T, HAN Y, DONG R, LIU F, YAN F, GAN T, FU D. Evaluating the effect of B-site cation doping on the properties of Pr0.4Sr0.5Fe0.9Mo0.1O3 for reversible single-component cells[J]. Ind Eng Chem Res,2022,61(15):5030−5041. doi: 10.1021/acs.iecr.2c00591
    [15]
    LEE J, MYUNG J, NADEN A, JEON O, SHUL Y, IRVINE J. Replacement of Ca by Ni in a perovskite titanate to yield a novel perovskite exsolution architecture for oxygen-evolution reactions[J]. Adv Energy Mater,2020,1903693.
    [16]
    DONG X, TIAN L, LI J, ZHAO Y C, TIAN Y, LI Y D. Single layer fuel cell based on a composite of Ce0.8Sm0.2O2-delta-Na2CO3 and a mixed ionic and electronic conductor Sr2Fe1.5Mo0.5O6-delta[J]. J Power Sources,2014,249:270−276. doi: 10.1016/j.jpowsour.2013.10.045
    [17]
    LI P, DONG R, WANG Y, YAN F, WANG L, LI M, FU D. Improving the performance of Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ-based single-component fuel cell and reversible single-component cells by manufacturing A-site deficiency[J]. Renewable Energy,2021,177:387−396. doi: 10.1016/j.renene.2021.05.141
    [18]
    SONG Y, ZHANG X, XIE K, WANG G, BAO X. High-temperature CO2 electrolysis in solid oxide electrolysis cells: Developments, challenges, and prospects[J]. Adv Mater,2019,31(50):e1902033. doi: 10.1002/adma.201902033
    [19]
    ZHANG L, HU S, LI W, CAO Z, LIU H, ZHU X, YANG W. Nano-CeO2-modified cathodes for direct electrochemical CO2 reduction in solid oxide electrolysis cells[J]. ACS Sustainable Chem Eng,2019,7(10):9629−9636. doi: 10.1021/acssuschemeng.9b01183
    [20]
    WANG S, JIANG H, GU Y, YIN B, CHEN S, SHEN M, ZHENG Y, GE L, CHEN H, GUO L. Mo-doped La0.6Sr0.4FeO3−δ as an efficient fuel electrode for direct electrolysis of CO2 in solid oxide electrolysis cells[J]. Electrochim Acta,2020,337:135794. doi: 10.1016/j.electacta.2020.135794
    [21]
    LI P, CHEN X, LI Y, SCHWANK J W. Effect of preparation methods on the catalytic activity of La0.9Sr0.1CoO3 perovskite for CO and C3H6 oxidation[J]. Catal Today,2021,364:7−15. doi: 10.1016/j.cattod.2020.03.012
    [22]
    RUAN Y, ZHAO Y, LU Y, GUO D, ZHAO Y, WANG S. Mesoporous LaAl0.25Ni0.75O3 perovskite catalyst using SBA-15 as templating agent for methane dry reforming[J]. Microporous Mesoporous Mater,2020,303:110278. doi: 10.1016/j.micromeso.2020.110278
    [23]
    YAN F, LI P, ZHANG X. CO and C3H6 oxidation over La0.9Sr0.1CoO3 catalysts: Influence of preparation solvent[J]. Korean J Chem Eng,2021,38(5):945−951. doi: 10.1007/s11814-021-0781-9
    [24]
    LI P, CHEN X, MA L, BHAT A, LI Y, SCHWANK J W. Effect of Ce and La dopants in Co3O4 nanorods on catalytic activity of CO and C3H6 oxidation[J]. Catal Sci Technol,2019,9:1165−1177. doi: 10.1039/C8CY02460J
    [25]
    MARROCCHELLI D, BISHOP S R, TULLER H L, YILDIZ B. Understanding chemical expansion in non‐stoichiometric oxides: ceria and zirconia case studies[J]. Adv Funct Mater,2012,22(9):1958−1965. doi: 10.1002/adfm.201102648
    [26]
    SWALLOW J, WOODFORD W, CHEN Y, LU Q, KIM J, CHEN D, CHIANG Y M, CARTER W, YILDIZ B, TULLER H. Chemomechanics of ionically conductive ceramics for electrical energy conversion and storage[J]. J Electroceram,2014,32(1):3−27.
    [27]
    FU Y, SUBARDI A, HSIEH M, CHANG W. Electrochemical Properties of La0.5Sr0.5Co0.8M0.2O3-δ (M=Mn, Fe, Ni, Cu) Perovskite Cathodes for IT-SOFCs[J]. J Am Ceram Soc,2016,99(4):1345−1352. doi: 10.1111/jace.14127
    [28]
    FAN L, WANG J, HUANG Z, YAO X, HOU N, GAN T, GAN J, ZHAO Y, LI Y. Enhancement of the electrocatalytic activity of La0.6Sr0.4Co0.2Fe0.8O3−δ through surface modification by acid etching[J]. Catal Today,2021,364:97−103. doi: 10.1016/j.cattod.2020.11.024
    [29]
    WAN Y, XING Y, XU Z, XUE S, ZHANG S, XIA C. A-site bismuth doping, a new strategy to improve the electrocatalytic performances of lanthanum chromate anodes for solid oxide fuel cells[J]. Appl Catal B: Environ,2020,269:118809.
    [30]
    HUA B, LI M, ZHANG Y Q, SUN Y F, LUO J L. All-in-one perovskite catalyst: smart controls of architecture and composition toward enhanced oxygen/hydrogen evolution reactions[J]. Adv Energy Mater,2017,7(20):1700666. doi: 10.1002/aenm.201700666
    [31]
    MOON E J, XIE Y, LAIRD E D, KEAVNEY D J, LI C Y, MAY S J. Fluorination of epitaxial oxides: synthesis of perovskite oxyfluoride thin films[J]. J Am Chem Soc,2014,136(6):2224−2227. doi: 10.1021/ja410954z
    [32]
    ZHUANG Z, LI Y, YU R, XIA L, YANG J, LANG Z, ZHU J, HUANG J, WANG J, WANG Y, FAN L, WU J, ZHAO Y, WANG D, LI Y. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes[J]. Nature Catal,2022,5(4):300−310. doi: 10.1038/s41929-022-00764-9
    [33]
    YANG X, SUN W, MA M, XU C, REN R, QIAO J, WANG Z, ZHEN S, SUN K. Enhancing stability and catalytic activity by in situ exsolution for high-performance direct hydrocarbon solid oxide fuel cell anodes[J]. Ind Eng Chem Res,2021,60(21):7826−7834.
    [34]
    LI P, YANG Q, ZHANG H, YAO M, YAN F, FU D. Effect of Fe, Ni and Zn dopants in La0.9Sr0.1CoO3 on the electrochemical performance of single-component solid oxide fuel cell[J]. Int J Hydrogen Energy,2020,45(20):11802−11813. doi: 10.1016/j.ijhydene.2020.02.116
    [35]
    MA L, SEO C Y, CHEN X, SUN K, SCHWANK J W. Indium-doped Co3O4 nanorods for catalytic oxidation of CO and C3H6 towards diesel exhaust[J]. Appl Catal B: Environ,2018,222:44−58. doi: 10.1016/j.apcatb.2017.10.001
    [36]
    ZHI X, GAN T, HOU N, FAN L, YAO T, WANG J, ZHAO Y, Li Y. ZnO-promoted surface diffusion on NiO-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cell[J]. J Power Sources,2019,423:290−296. doi: 10.1016/j.jpowsour.2019.03.088
    [37]
    LI P, DONG R, YANG P, MA X, YAN F, ZHANG P, FU D. Performance enhanced of Ni-Ce0.8Sm0.2O1.9 hydrogen electrode for reversible solid oxide cells with cadmium substitution[J]. J Electroanal Chem,2021,882:115018. doi: 10.1016/j.jelechem.2021.115018
    [38]
    LI P, DONG R, JIANG X, ZHANG S, LIU T, WANG R, YAN F, FU D. The effect of CeO2 morphology on the electrochemical performance of the reversible solid oxide cells[J]. J Electroanal Chem,2020,873:114513. doi: 10.1016/j.jelechem.2020.114513
    [39]
    WANG Z, YANG W, SHAFI S P, BI L, WANG Z, PENG R, XIA C, LIU W, LU Y. A high performance cathode for proton conducting solid oxide fuel cells[J]. J Mater Chem A,2015,3(16):8405−8412.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (362) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return