Volume 51 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
ZHENG Jun-ning, WU Hui, LIU Yong, LI Gui, XU Li-xin, WAN Chao, YE Ming-fu. Preparation of Rh/CeOx-C3N4 catalyst and its catalytic dehydrogenation of hydrazine hydrate[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 1018-1025. doi: 10.19906/j.cnki.JFCT.2022082
Citation: ZHENG Jun-ning, WU Hui, LIU Yong, LI Gui, XU Li-xin, WAN Chao, YE Ming-fu. Preparation of Rh/CeOx-C3N4 catalyst and its catalytic dehydrogenation of hydrazine hydrate[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 1018-1025. doi: 10.19906/j.cnki.JFCT.2022082

Preparation of Rh/CeOx-C3N4 catalyst and its catalytic dehydrogenation of hydrazine hydrate

doi: 10.19906/j.cnki.JFCT.2022082
Funds:  The project was supported by the National Natural Science Foundation of China (22108238, U22A20408), Anhui Provincial Natural Science Foundation (1908085QB68), Major Science and Technology Project of Anhui Province (201903a05020055), China Postdoctoral Science Foundation (2019M662060, 2020T130580), Open Research Funds of Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials (ZD2021007), Open Research Funds of Jiangxi Province Engineering Research Center of Ecological Chemical Industry (STKF2109) and 2022 National Undergraduate Innovation and Entrepreneurship Training Program (202210360037)
  • Received Date: 2022-10-11
  • Accepted Date: 2022-11-01
  • Rev Recd Date: 2022-10-31
  • Available Online: 2022-11-16
  • Publish Date: 2023-07-01
  • In this paper, CeOx was doped into the catalytic system and cerium-doped carbon nanomaterial was prepared by roasting at high temperature in N2 atmosphere as the carrier. Rh/CeOx-C3N4 catalyst was synthesized by loading the active component Rh onto CeOx-C3N4 carrier through impregnation reduction method, and its influence on catalytic performance of hydrazine hydrate dehydrogenation was investigated. The results showed that there was a synergistic effect between the active component Rh and CeOx in Rh/CeOx-C3N4 catalyst, and the doping of CeOx effectively dispersed and stabilized the metal active component, providing more active sites for catalytic reaction. Therefore, the catalyst has good catalytic activity for the dehydrogenation of hydrazine hydrate. The prepared Rh/CeOx-C3N4 catalyst showed the best catalytic activity for hydrazine hydrate, and the initial conversion TOF was up to 1959.24 h−1. After 5 cycles, the catalytic activity remained good, indicating good durability.
  • loading
  • [1]
    邹爱华, 徐晓梅, 周浪, 林路贺, 康志兵. 石墨烯负载Co-CeOx纳米复合物的制备及其对氨硼烷水解产氢的催化性能[J]. 燃料化学学报,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3

    ZOU Ai-hua, XU Xiao-mei, ZHOU Lang, LIN Lu-he, KANG Zhi-bing. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. J Fuel Chem Technol,2021,49(9):1371−1378. doi: 10.1016/S1872-5813(21)60085-3
    [2]
    ZHANG Z J, ZHANG S L, YAO Q L, FENG G, ZHU M H, LU Z H. Metal-organic framework immobilized RhNi alloy nanoparticles for complete H2 evolution from hydrazine borane and hydrous hydrazine[J]. Inorg Chem Front,2018,5(2):370−377. doi: 10.1039/C7QI00555E
    [3]
    ASCHLAPBACH L, ZUTTEL A. Hydrogen-storage materials for mobile applications[J]. Nature,2001,414(6861):353−358. doi: 10.1038/35104634
    [4]
    姜伟丽, 何利梅, 黄斌, 陈雅琪, 周广林, 周红军. Rh-BIPHEPHOS催化剂作用下的丁烯异构与氢甲酰化反应[J]. 燃料化学学报,2021,49(8):1173−1180. doi: 10.1016/S1872-5813(21)60126-3

    JIANG Wei-li, HE Li-mei, HUANG Bin, CHEN Ya-qi, ZHOU Guang-lin, ZHOU Hong-jun. Isomerization and hydroformylation of butenes under the catalysis of Rh-BIPHEPHOS[J]. J Fuel Chem Technol,2021,49(8):1173−1180. doi: 10.1016/S1872-5813(21)60126-3
    [5]
    VALERO-PEDRAZA M J, COT D, PETIT E, AGUEY-ZINSOU K F, ALAUZUN J G, DEMIRCI U B. Ammonia borane nanospheres for hydrogen storage[J]. ACS Appl Nano Mater,2019,2(2):1129−1138. doi: 10.1021/acsanm.9b00176
    [6]
    SEMIZ L. Hydrogen generation from ammonia borane by polymer supported platinum films[J]. Chem Phys Lett,2021,767:138365. doi: 10.1016/j.cplett.2021.138365
    [7]
    GUO F, ZOU H, YAO Q, HUANG B, LU Z H. Monodispersed bimetallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydrazine in aqueous solution[J]. Renewable Energy,2020,155:1293−1301. doi: 10.1016/j.renene.2020.04.047
    [8]
    郭淼鑫, 杜君臣, 李红, 张秀娟, 张爱敏, 赵云昆. 甲烷燃烧贵金属催化剂研究新进展[J]. 稀有金属,2021,45(9):1133−1147. doi: 10.13373/j.cnki.cjrm.XY19110015

    GUO Miao-xin, DU Jun-chen, LI Hong, ZHANG Xiu-juan, ZHANG Ai-min, ZHAO Yun-kun. New research progress on precious metal catalysts for methane combustion. chinese journal of rare metals[J]. Chin J Rare Met,2021,45(9):1133−1147. doi: 10.13373/j.cnki.cjrm.XY19110015
    [9]
    MOTTA D, BARLOCCO I, BELLOMI S, VILLA A, DIMITRATOS N. Hydrous hydrazine decomposition for hydrogen production using of Ir/CeO2: Effect of reaction parameters on the activity[J]. Nanomaterials,2021,11(5):1340. doi: 10.3390/nano11051340
    [10]
    HE L, LIANG B, HUANG Y, ZHANG T. Design strategies of highly selective nickel catalysts for H2 production via hydrous hydrazine decomposition: a review[J]. Natl Sci Rev,2018,5(3):356−364. doi: 10.1093/nsr/nwx123
    [11]
    WAN C, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 nanosheets: a highly efficient catalyst for hydrogen generation from hydrous hydrazine[J]. J Mater Chem A,2019,7(15):8798−8804. doi: 10.1039/C9TA01535C
    [12]
    WANG J, LI W, WEN Y, ZHAO X C, ZHOU Y L, LI Y T, YANG L J. Rh-Ni-B nanoparticles as highly efficient catalysts for hydrogen generation from hydrous hydrazine[J]. Adv Energy Mater,2015,5(10):1401879. doi: 10.1002/aenm.201401879
    [13]
    ARANISHI K, SINGH A K, XU, Q. Dendrimer-encapsulated bimetallic Pt-Ni nanoparticles as highly efficient catalysts for hydrogen generation from chemical hydrogen storage materials[J]. ChemCatChem,2013,5(8):2248−2252. doi: 10.1002/cctc.201300143
    [14]
    ZHOU L, LUO X J, XU L X, WAN C, YE M F. Pt-Ni nanoalloys for H2 generation from hydrous hydrazine[J]. Catalysts,2020,10(8):930. doi: 10.3390/catal10080930
    [15]
    WAN C, ZHOU L, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst[J]. Chem Eng J,2020,396:125229. doi: 10.1016/j.cej.2020.125229
    [16]
    DU X, CAI P, LUO W, CHENG G Z. Facile synthesis of P-doped Rh nanoparticles with superior catalytic activity toward dehydrogenation of hydrous hydrazine[J]. Int J Hydrogen Energy,2017,42(9):6137−6143. doi: 10.1016/j.ijhydene.2016.12.049
    [17]
    王辉, 李士君, 王梅, 裴彦博, 胡绍争. 载银g-C3N4(Ⅰ)/g-C3N4(Ⅱ)同素异质结催化剂的制备及光催化固氮产氨性能[J]. 材料导报,2018,32(20):3496−3503. doi: 10.11896/j.issn.1005-023X.2018.20.002

    WANG Hui, LI Shi-jun, WANG Mei, PEI Yan-bo, HU Shao-zheng. Ag-loaded g-C3N4(Ⅰ)/g-C3N4(Ⅱ) isotype heterojunction catalysts with an application to photocatalytic N2 fixation[J]. Mater Rev,2018,32(20):3496−3503. doi: 10.11896/j.issn.1005-023X.2018.20.002
    [18]
    QIU Y, SHI Q, ZHOU L, CHEN M H, CHEN C, TANG P P, WALKER G S, WANG P. NiPt nanoparticles anchored onto hierarchical nanoporous N-doped carbon as an efficient catalyst for hydrogen generation from hydrazine monohydrate[J]. ACS Appl Mater Interfaces,2020,12(16):18617−18624. doi: 10.1021/acsami.0c03096
    [19]
    石张平, 祁晓岚, 李旭光, 李华英, 李经球, 孔德金, 俞俊. La2O3助剂对Rh/SiO2催化CO加氢反应性能的影响[J]. 燃料化学学报,2020,48(4):483−489. doi: 10.3969/j.issn.0253-2409.2020.04.012

    SHI Zhang-ping, QI Xiao-lan, LI Xu-guang, LI Hua-ying, LI Jing-qiu, KONG De-jin, YU Jun. Effect of La2O3 addition on the catalytic performance of Rh/SiO2 for CO hydrogenation[J]. J Fuel Chem Technol,2020,48(4):483−489. doi: 10.3969/j.issn.0253-2409.2020.04.012
    [20]
    WU D, WEN M, LIN X, WU Q S, GU C, CHEN H X. A NiCo/NiO-CoOx ultrathin layered catalyst with strong basic sites for high-performance H2 generation from hydrous hydrazine[J]. J Mater Chem A,2016,4(17):6595−6602. doi: 10.1039/C6TA01092J
    [21]
    WANG Q, GUAN S Y, LI B. 2D graphitic-C3N4 hybridized with 1D flux-grown Na-modified K2Ti6O13 nanobelts for enhanced simulated sunlight and visible-light photocatalytic performance[J]. Catal Sci Technol, 7(18): 4064–4078.
    [22]
    QING S, QIU Y P, DAI H, WANG P. Study of formation mechanism of Ni-Pt/CeO2 catalyst for hydrogen generation from hydrous hydrazine[J]. Catal Sci Technol,2019,787:1187−1194.
    [23]
    SONG F Z, YANG X, XU Q. Ultrafine bimetallic Pt-Ni nanoparticles achieved by metal-organic framework templated zirconia/porous carbon/reduced graphene oxide: Remarkable catalytic activity in dehydrogenation of hydrous hydrazine[J]. Small Methods,2020,4(1):1900707. doi: 10.1002/smtd.201900707
    [24]
    MEN Y, SU J, WANG X, CAI P, CHENG G Z, LUO W. NiPt nanoparticles supported on CeO2 nanospheres for efficient catalytic hydrogen generation from alkaline solution of hydrazine[J]. Chin Chem Lett,2019,30(3):634−637. doi: 10.1016/j.cclet.2018.11.010
    [25]
    ZOU H T, ZHANG S L, HONG X L, YAO Q L, LUO Y, LU Z H. Immobilization of Ni-Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane[J]. J Alloys Compd,2020,835:155426. doi: 10.1016/j.jallcom.2020.155426
    [26]
    YAO Q L, LU Z H, JIA Y S, CHEN X S, LIU X. In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis[J]. Int J Hydrogen Energy,2014,40(5):2207−2215.
    [27]
    SHEN J, YANG L, HU K, LUO W, CHENG G Z. Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage[J]. Int J Hydrogen Energy,2015,40(2):1062−1070. doi: 10.1016/j.ijhydene.2014.11.031
    [28]
    LU R, HU M, XU C L, WANG Y, ZHANG Y, XU B, GAO D J, BI J, FAN G Y. Hydrogen evolution from hydrolysis of ammonia borane catalyzed by Rh/g-C3N4 under mild conditions[J]. Int J Hydrogen Energy,2018,43(14):7038−7045. doi: 10.1016/j.ijhydene.2018.02.148
    [29]
    ALSAWAT M, ALTALHI T, SANTOS A, LOSIC D. Facile and controllable route for nitrogen doping of carbon nanotubes composite membranes by catalyst-free chemical vapour deposition[J]. Carbon,2016,106:295−305. doi: 10.1016/j.carbon.2016.05.043
    [30]
    CHANDRA M, XU Q. Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts[J]. J Power Sources,2007,168(1):135−142. doi: 10.1016/j.jpowsour.2007.03.015
    [31]
    SOARES O S G P, ROCHA R P, GONCALVES A G, FIGUEIREDO J L, ÓRFÃO J J M, PEREIRA M F R. Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes[J]. Appl Catal B: Environ,2016,192:296−303. doi: 10.1016/j.apcatb.2016.03.069
    [32]
    AKBAYRAK S, TONBUL Y, ÖZKAR S. Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J]. Appl Catal B: Environ,2016,198:162−170. doi: 10.1016/j.apcatb.2016.05.061
    [33]
    YU H, WANG Z, TIAN W, DAI Z, XU Y, LI X, L WANG, H WANG. Boosting electrochemical nitrogen fixation by mesoporous Rh film with boron and sulfur co-doping[J]. Mater Today Energy,2021,20:100681. doi: 10.1016/j.mtener.2021.100681
    [34]
    祝清超, 陈宇圣, 李建统, 代东辉, 黄江予, 焦毅, 王健礼, 陈耀强. Rh价态调控对Rh/Al2O3三效催化剂催化活性的影响[J]. 化学研究与应用,2020,32(11):2020−2027. doi: 10.3969/j.issn.1004-1656.2020.11.012

    ZHU Qing-chao, CHEN Yu-sheng, LI Jian-tong, DAI Dong-hui, HUANG Jiang-yu, JIAO Yi, WANG Jian-li, CHEN Yao-qiang. Effect of Rh valence regulation on catalytic activity of Rh/Al2O3 three-way catalysts[J]. Chem Res Appl,2020,32(11):2020−2027. doi: 10.3969/j.issn.1004-1656.2020.11.012
    [35]
    王东哲, 王丽宝, 张磊, 庆绍军, 韩蛟, 张财顺, 高志贤, 冯旭浩. Cr掺杂对Cu-Ce复合催化剂催化甲醇水蒸气重整制氢的影响[J]. 燃料化学学报,2020,48(5):619−625. doi: 10.3969/j.issn.0253-2409.2020.05.013

    WANG Dong-zhe, WANG Li-bao, ZHANG Lei, QING Shao-jun, HAN Jiao, ZHANG Cai-shun, GAO Zhi-xian, FENG Xu-hao. Effect of Cr doping on hydrogen production via methanol steam reforming over Cu-Ce composite catalysts[J]. J Fuel Chem Technol,2020,48(5):619−625. doi: 10.3969/j.issn.0253-2409.2020.05.013
    [36]
    ROSCA V, DUCA M, DEGROOT M, KOPER M T M. Nitrogen cycle electrocatalysis[J]. Chem Rev,2009,109(6):2209−2244. doi: 10.1021/cr8003696
    [37]
    ZHOU L, SUN L, XU L X, WAN C, AN Y, YE M F. Recent developments of effective catalysts for hydrogen storage technology using N-Ethylcarbazole[J]. Catalysts,2020,10(6):648. doi: 10.3390/catal10060648
    [38]
    DAI H, QIU Y P, DAI H B, WANG P. A study of degradation phenomenon of Ni-Pt/CeO2 catalyst towards hydrogen generation from hydrous hydrazine[J]. Int J Hydrogen Energy,2017,42(26):16355−16361. doi: 10.1016/j.ijhydene.2017.05.086
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (248) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return