Volume 51 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
ZHANG Jia-dong, NIU Jun-tian, LIU Hai-yu, FAN Bao-guo, JIN Yan. Study on the activation mechanism of O-enhanced methane adsorbed on Pd-Cu catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 987-995. doi: 10.19906/j.cnki.JFCT.2022091
Citation: ZHANG Jia-dong, NIU Jun-tian, LIU Hai-yu, FAN Bao-guo, JIN Yan. Study on the activation mechanism of O-enhanced methane adsorbed on Pd-Cu catalyst[J]. Journal of Fuel Chemistry and Technology, 2023, 51(7): 987-995. doi: 10.19906/j.cnki.JFCT.2022091

Study on the activation mechanism of O-enhanced methane adsorbed on Pd-Cu catalyst

doi: 10.19906/j.cnki.JFCT.2022091
Funds:  The project was supported by the National Natural Science Foundation of China (52106179)
  • Received Date: 2022-11-11
  • Accepted Date: 2022-12-05
  • Rev Recd Date: 2022-11-30
  • Available Online: 2022-12-26
  • Publish Date: 2023-07-01
  • Compared with traditional combustion, methane catalytic combustion has the advantages of low combustion temperature, clean and high efficiency, and it has good application prospects in natural gas vehicles, solid oxide fuel cell and other fields. In order to reveal the mechanism of dehydrogenation of methane on Pd-Cu clusters with different doping ratios, the density functional theory (DFT) is used to calculate the direct dehydrogenation and O-assisted dehydrogenation of CH4* in different clusters. The calculation results show that the doping of Pd atoms increases the adsorption capacity of Cu(111) surface, and in the process of direct dehydrogenation, the doping of Pd not only reduces the energy barrier from 2.56 to 2.43 eV, but also changes the rate determining step from CH*+*→C* + H* to CH4*+*→CH3* + H*. Pre-adsorbed O can significantly reduce the energy barrier of methane dehydrogenation, and the rate determining steps are CH4* + O*→CH3* + OH*. The highest energy barrier of O-assisted dehydrogenation of CH4* is Cu(111)(1.56 eV)>Pd6Cu(111)(1.44 eV)>Pd2Cu(111)(1.38 eV) on three clusters, which indicates that the addition of Pd has improved the performance of direct dehydrogenation and O-assisted dehydrogenation.
  • loading
  • [1]
    天工. 《中国天然气发展报告(2021)》发布[J]. 天然气工业,2021,41(8):68.

    TIAN Gong. China Natural Gas Development Report (2021) released[J]. NGI,2021,41(8):68.
    [2]
    DAVID A. Attributing atmospheric methane to anthropogenic emission sources[J]. Acc Chem Res,2016,49(7):1344−1350. doi: 10.1021/acs.accounts.6b00081
    [3]
    REAY D S, SMITH P, CHRISTENSEN T R, JAMES R H, CLARK H. Methane and global environmental change[J]. Annu Rev Env Resour,2018,43(1):165−92. doi: 10.1146/annurev-environ-102017-030154
    [4]
    楚培齐, 王赛飞, 赵世广, 张依, 邓积光, 刘雨溪, 郭萌, 段二红. 甲烷催化燃烧反应机理及催化剂研究进展[J]. 燃料化学学报,2022,50(2):180−191. doi: 10.19906/j.cnki.jfct.2021077

    CHU Pei-qi, WANG Sai-fei, ZHAO Shi-guang, ZHANG Yi, DENG Ji-guang, LIU Yu-xi, GUO Meng, DUAN Er-hong. Research progress of reaction mechanism and catalysts on catalytic methane combustion[J]. J Fuel Chem Technol,2022,50(2):180−191. doi: 10.19906/j.cnki.jfct.2021077
    [5]
    HOU M L, ZHANG X, FU C, CEN W L, CHEN J X. Effects of Pd/Pt bimetal supported by γ-Al2O3 surface on methane activation[J]. Phys Chem Chem Phys,2020,22(8):1−21.
    [6]
    DIANAT A, SERIANI N, CIACCHI L C, BOBETH M, CUNIBERTI G. DFT study of reaction processes of methane combustion on PdO(100)[J]. Chem Phys,2014,443:53−60. doi: 10.1016/j.chemphys.2014.08.006
    [7]
    JØRGENSEN M, GRÖNBECK H. First-principles microkinetic modeling of methane oxidation over Pd(100) and Pd(111)[J]. ACS Catal,2016,6(10):6730−6738. doi: 10.1021/acscatal.6b01752
    [8]
    齐大彬, 罗旭东, 姚君, 姚玉龙, 芦晓军. CO在Pd平板与Pd38团簇表面上的催化氧化机理研究[J]. 燃料化学学报,2020,48(4):432−439. doi: 10.1016/S1872-5813(20)30017-7

    QI Da-bin, LUO Xu-dong, YAO Jun, YAO Yu-long, LU Xiao-jun. Catalytic oxidation of CO on Pd38 cluster and Pd slab, a computational study[J]. J Fuel Chem Technol,2020,48(4):432−439. doi: 10.1016/S1872-5813(20)30017-7
    [9]
    CHEN L X, MCCANN J P, TAIT S L. A re-examination of the catalyst activation and temperature hysteresis in methane combustion on Pt/Al2O3[J]. Appl Catat A: Gen,2018,549:19−30. doi: 10.1016/j.apcata.2017.09.008
    [10]
    ZHAO C C, ZHAO Y H, LI S G, SUN Y H. Effect of Pd doping on CH4 reactivity over Co3O4 catalysts from density-functional theory calculations[J]. Chin J Catal,2017,38(5):813−820. doi: 10.1016/S1872-2067(17)62817-1
    [11]
    LIU W G, GUO D Y, XU X. Research progress of palladium catalysts for methane combustion[J]. China Pet Process,2012,14(3):1−9.
    [12]
    SOLYMOSI F, ERDOHELYI A, CSERENYI J. Decemposition of CH4 over supported Pd catalysts[J]. J Catal,1994,147(1):272−278. doi: 10.1006/jcat.1994.1138
    [13]
    QI W J, RAN J Y, WANG R R, DU X S, SHI J, RAN M C. Kinetic mechanism of effects of hydrogen addition on methane catalytic combustion over Pt(111) surface: A DFT study with cluster modeling[J]. Comput Mater Sci,2016,111:430−442. doi: 10.1016/j.commatsci.2015.09.002
    [14]
    CHEN Y, VLACHOS D G. Density functional theory study of methane oxidation and reforming on Pt(111) and Pt(211)[J]. Ind Eng Chem Res,2012,51(38):12244−12252.
    [15]
    LIU H Y, ZHANG R G, YAN R X, WANG B J, XIE K C. CH4 dissociation on NiCo(111) surface: A first-principles study[J]. Appl Surf Sci,2011,257(21):8955−8964. doi: 10.1016/j.apsusc.2011.05.073
    [16]
    HE J, YANG Z Q, DING C L, ZHANG L, YAN Y F, DU X S. Methane dehydrogenation and oxidation process over Ni-based bimetallic catalysts[J]. Fuel,2018,226:400−409. doi: 10.1016/j.fuel.2018.04.031
    [17]
    NIU J T, WANG Y L, LILAND S E, SAMUEL K R, YANG J, ROUT K R, LUO J, RØNNING M, RAN J Y, CHEN D. Unraveling enhanced activity, selectivity, and coke-resistance of Pt-Ni bimetallic clusters in dry reforming[J]. ACS Catal,2021,11(4):2398−2411. doi: 10.1021/acscatal.0c04429
    [18]
    NIU J T, LIU H Y, JIN Y, FAN B G, QI W J, RAN J Y. A density functional theory study of methane activation on MgO supported Ni9M1 cluster: Role of M on C–H activation[J]. Front Chem Sci Eng,2022,16(10):1485−1492. doi: 10.1007/s11705-022-2169-8
    [19]
    JIANG Z, WU Z Q, FANG T, YI C H. Enhancement C–H bond activation of methane via doping Pd, Pt, Rh and Ni on Cu(111) surface: A DFT study[J]. Chem Phys Lett,2019,715:323−329. doi: 10.1016/j.cplett.2018.12.001
    [20]
    MENG Y Y, DING C M, GAO X F, MA L C, ZHANG K, WANG J W, LI Z. Adsorption of Pd on the Cu(111) surface and its catalysis of methane partial oxidation: A density functional theory study[J]. Appl Surf Sci,2020,513:145724. doi: 10.1016/j.apsusc.2020.145724
    [21]
    WANG J, WANG G C. Promotion effect of methane activation on Cu(111) by the surface-active oxygen species: A combination of DFT and ReaxFF study[J]. J Phys Chem C,2018,122(30):17338−17346. doi: 10.1021/acs.jpcc.8b05294
    [22]
    钱梦丹, 薛继龙, 夏盛杰, 倪哲明, 蒋军辉, 曹勇勇. Pd/Cu(111)双金属表面催化糠醛脱碳及加氢的反应机理[J]. 燃料化学学报,2017,45(1):34−42. doi: 10.1016/S1872-5813(17)30008-7

    QIAN Meng-dan, XUE Ji-long, XIA Sheng-ji, NI Zhe-ming, JIANG Jun-hui, CAO Yong-yong. Decarbonylation and hydrogenation reaction of furfural on Pd/Cu(111) surface[J]. J Fuel Chem Technol,2017,45(1):34−42. doi: 10.1016/S1872-5813(17)30008-7
    [23]
    康建东. 铜基催化剂氧化低浓度甲烷的反应动力学及性能调控[D]. 重庆: 重庆大学, 2020.

    KANG Jian-dong. Reaction kinetics and performance regulation of copper-based catalysts for oxidation of low-concentration methane[D]. Chongqing, Chongqing University, 2020.
    [24]
    GONZALEZ C, SCHLEGEL H B. An improved algorithm for reaction path following[J]. J Chem Phys,1989,90(4):2154. doi: 10.1063/1.456010
    [25]
    BU X X, RAN J Y, NIU J T, OU Z L, TANG L, HUANG X. Reaction mechanism insights into CH4 catalytic oxidation on Pt13 cluster: A DFT study[J]. Mol Catal,2021,515:111891. doi: 10.1016/j.mcat.2021.111891
    [26]
    HAMMER B, NØRSKOV J K. Theoretical surface science and catalysis-calculations and concepts[J]. Adv Catal,2000,(45):1−71.
    [27]
    LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. J Comput Chem,2012,(33):580−592.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (246) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return