Volume 51 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
QIU Xiao-kui, SUN Jia-li, HUA Jun-feng, ZHENG Jun-ning, WAN Chao, XU Li-xin. Hydrogen generation from hydrous hydrazine over Rh/g-C3N4 nanocatalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1313-1320. doi: 10.19906/j.cnki.JFCT.2022093
Citation: QIU Xiao-kui, SUN Jia-li, HUA Jun-feng, ZHENG Jun-ning, WAN Chao, XU Li-xin. Hydrogen generation from hydrous hydrazine over Rh/g-C3N4 nanocatalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1313-1320. doi: 10.19906/j.cnki.JFCT.2022093

Hydrogen generation from hydrous hydrazine over Rh/g-C3N4 nanocatalysts

doi: 10.19906/j.cnki.JFCT.2022093
Funds:  The project was supported by the National Natural Science Foundation of China (22108238, U22A20408), Anhui Provincial Natural Science Foundation (1908085QB68), Major Science and Technology Project of Anhui Province (201903a05020055) and China Postdoctoral Science Foundation (2019M662060, 2020T130580,PC2022046)
  • Received Date: 2022-09-23
  • Accepted Date: 2022-12-13
  • Rev Recd Date: 2022-12-13
  • Available Online: 2022-12-26
  • Publish Date: 2023-09-30
  • In this paper, g-C3N4 obtained by calcining melamine at high temperature in static air was used as the carrier, and the precious metal Rh was used as the active component. The Rh nanoparticles were supported on the g-C3N4 support by a simple impregnation reduction method to prepare high activity and high selectivity. Various characterization methods were used to study the microstructure and composition of the catalyst. In addition, the effect of reaction temperature and NaOH concentration on the catalytic decomposition of hydrous hydrazine was also investigated. The results show that the excellent catalytic activity of the catalyst stems from the fact that the g-C3N4 support provides anchor sites for the metal Rh and the support and the strong metal-support interactions. The catalytic activity of the catalyst increases with the increase of the reaction temperature, and the Rh/g-C3N4 catalyst has the highest catalytic activity when the NaOH concentration is 0.75 mol/L. The Rh/g-C3N4 catalyst has an activation energy of 30.7 kJ/mol and TOF value of 1466.4 h−1 for catalyzing the decomposition of hydrous hydrazine for hydrogen production. After 5 cycles, the catalyst still maintains a good catalytic activity, indicating that the catalyst has a good cyclic stability.
  • loading
  • [1]
    WAN C, SUN L, XU L, CHENG D G, CHEN F, ZHAN X, YANG Y. Novel NiPt alloy nanoparticle decorated 2D layered g-C3N4 nanosheets: a highly efficient catalyst for hydrogen generation from hydrous hydrazine[J]. J Mater Chem A,2019,7(15):8798−8804. doi: 10.1039/C9TA01535C
    [2]
    LIU M M, ZHOU L, WAN C, YE M F, XU L X. Achieving com-plete hydrogen evolution from N2H4BH3 over mesoporous TiO2 immobilized NiPt alloy nanoparticles[J]. ChemistrySelect,2021,6(34):9185−9190. doi: 10.1002/slct.202102592
    [3]
    AKBAYRAK S, TONBUL Y, ÖZKAR S. Magnetically separable Rh0/Co3O4 nanocatalyst provides over a million turnovers in hydrogen release from ammonia borane[J]. ACS Sustainable Chem Eng,2020,8(10):4216. doi: 10.1021/acssuschemeng.9b07402
    [4]
    WAN C, ZHOU L, SUN L, XU L X, CHENG D G, CHEN F Q, ZHAN X L, YANG Y R. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst[J]. Chem Eng J,2020,396:125229. doi: 10.1016/j.cej.2020.125229
    [5]
    SEMIZ L. Hydrogen generation from ammonia borane by polymer supported platinum films[J]. Chem Phys Lett,2021,767:138365. doi: 10.1016/j.cplett.2021.138365
    [6]
    DU X, CAI P, LUO W, CHENG G Z. Facile synthesis of P-doped Rh nanoparticles with superior catalytic activity toward dehydrogenation of hydrous hydrazine[J]. Int J Hydrogen Energy,2017,42(9):6137−6143. doi: 10.1016/j.ijhydene.2016.12.049
    [7]
    任壮禾, 张欣, 高明霞, 潘洪革, 刘永锋. Ti基催化剂改性的NaAlH4储氢材料研究进展[J]. 稀有金属,2021,45(5):569.

    REN Zhuang-he, ZHANG Xin, GAO Ming-xia, PAN Hong-ge, LIU Yong-feng. Research progress in Ti-based catalysts-modified NaAlH4 hydrogen storage materials[J]. Chin J Rare Met,2021,45(5):569.
    [8]
    路金林, 王琳, 李继东, 王一雍, 李胜利, 崔小强. 电沉积法制备钯金纳米催化剂及其对甲醇催化性能的研究[J]. 稀有金属,2015,39(6):493. doi: 10.13373/j.cnki.cjrm.2015.06.003

    LU Jin-lin, WANG Lin, LI Ji-dong, WANG Yi-yong, LI Sheng-li, CUI Xiao-qiang. Pd-Au nano-catalysts synthesized by electrodeposition and its cata-lytic performance for methanol[J]. Chin J Rare Met,2015,39(6):493. doi: 10.13373/j.cnki.cjrm.2015.06.003
    [9]
    任杨斌, 范燕平, 刘宪云, 段继转, 刘宝忠. 氨硼烷水解制氢贵金属催化剂研究进展[J]. 当代化工研究,2022,3:1. doi: 10.3969/j.issn.1672-8114.2022.05.001

    REN Yang-bin, FAN Yan-ping, LIU Xian-yun, DUAN Ji-zhuan, LIU Bao-zhong. Research progress of hydrolytic noble metal catalyst for hydrogen production from ammonia borane[J]. Mod Chem Res,2022,3:1. doi: 10.3969/j.issn.1672-8114.2022.05.001
    [10]
    WANG Y, SHEN J L, HUANG Y, LIU X, ZHAO Q X, ASTRUC D. Acid‐and base‐catalyzed hydrolytic hydrogen evolution from diboronic acid[J]. Eur J Inorg Chem,2021,29:3013−3018.
    [11]
    LIU X Y, LIU Y, WANG J C, MA J. Anatase-type TiO2-modified amorphous NiMo nanoparticles with superior catalytic performance toward dehydrogenation of hydrous hydrazine[J]. Ind Eng Chem Res,2022,61(4):1636−1643. doi: 10.1021/acs.iecr.1c03398
    [12]
    LI M Y, ZHOU Z Z, HU L, WANG S Y, ZHOU Y Z, ZHU R B, CHU X Z, VINU A, WAN T, GAZORLA G, YI J B, CHU D. W. Hydrazine hydrate intercalated 1T-dominant MoS2 with superior ambient stability for highly efficient electrocatalytic applications[J]. ACS Appl Mater Interfaces,2022,14(14):16338−16347. doi: 10.1021/acsami.2c02675
    [13]
    QIU Y P, SHI Q, ZHOU L L, CHEN M H, CHEN C, TANG P P, WALK-ER G S, WANG P. NiPt nanoparticles anchored onto hierarchical nanoporous N-doped carbon as an efficient catalyst for hydrogen generation from hydrazine monohydrate[J]. ACS Appl Mater Interfaces,2020,12(16):18617−18624. doi: 10.1021/acsami.0c03096
    [14]
    GUO F, ZOU H, YAO Q, HUANG B, LU Z H. Monodispersed bi-metallic nanoparticles anchored on TiO2-decorated titanium carbide MXene for efficient hydrogen production from hydra-zine in aqueous solution[J]. Renewable Energy,2020,155:1293−1301. doi: 10.1016/j.renene.2020.04.047
    [15]
    SINGH S K, ZHANG X B, XU Q. Room-temperature hydrogen generation from hydrous hydrazine for chemical hydrogen storage[J]. J Am Chem Soc,2009,131(29):9894−9895. doi: 10.1021/ja903869y
    [16]
    SHARMA P, SASSON Y. Highly active Ru-g-C3N4 photocatalyst for visible light assisted selective hydrogen transfer reaction using hydrazine at room temperature[J]. Catal Commun,2017,102:48−52. doi: 10.1016/j.catcom.2017.08.019
    [17]
    YAO Q L, HE M, HONG X L, CHEN X Y, FENG G, LU Z H. Hydrogen production via selective dehydrogenation of hydrazine borane and hydrous hydrazine over MoOx-promoted Rh catalyst[J]. Int J Hydrogen Energy,2019,44(53):28430−28440. doi: 10.1016/j.ijhydene.2019.02.105
    [18]
    ZHAO P P, CAO N, LUO W, CHENG G Z. Nanoscale MIL-101 supported RhNi nanoparticles: An efficient catalyst for hydro-gen generation from hydrous hydrazine[J]. J Mater Chem A,2015,3(23):12468−12475. doi: 10.1039/C5TA02201K
    [19]
    CHEN J M, YAO Q L, ZHU J, CHEN X S, LU Z H. Rh-Ni nanopar-ticles immobilized on Ce(OH)CO3 nanorods as highly efficient catalysts for hydrogen generation from alkaline solution of hydrazine[J]. Int J Hydrogen Energy,2016,41(6):3946−3954. doi: 10.1016/j.ijhydene.2015.12.158
    [20]
    YANG P, YANG L J, GAO Q, LUO Q, ZHAO X C, MAI X M, FU Q L, DONG M Y, WANG J C, HAO Y W, YANG R Z, LAI X C, WU S D, SHAO Q, DING T, LIN J, GUO Z H. Anchoring carbon nanotubes and post-hydroxylation treatment enhanced Ni nanofiber catalysts towards efficient hydrous hydrazine decomposition for effective hydrogen generation[J]. Chem Commun,2019,55(61):9011−9014. doi: 10.1039/C9CC04559G
    [21]
    JIANG R, QU X, ZENG F, LI Q, ZHENG X, XU Z, PENG J. MOF-74-immobilized ternary RhNiP nanoparticles as highly efficient hydrous hydrazine dehydrogenation catalysts in alkaline solutions[J]. Int J Hydrogen Energy,2019,44(13):6383−6391. doi: 10.1016/j.ijhydene.2019.01.117
    [22]
    WAN C, ZHOU L, XU S M, JIN B Y, GE X, QIAN X, XU L X, CHEN F Q, ZHAN X L, YANG Y R, CHENG D G. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid[J]. Chem Eng J,2022,429:132388. doi: 10.1016/j.cej.2021.132388
    [23]
    DU Y S, SU J, LUO W, CHENG G Z. Graphene-supported nickel-platinum nanoparticles as efficient catalyst for hydrogen generation from hydrous hydrazine at room temperature[J]. ACS Appl Mater Interfaces,2015,7(2):1031−1034. doi: 10.1021/am5068436
    [24]
    WANG J, ZHANG X B, WANG Z L, WANG L M, ZHANG Y. Rhodiumenickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage[J]. Energy Environ Sci,2012,5:6885−6888. doi: 10.1039/c2ee03344e
    [25]
    ZOU H T, ZHANG S L, HONG X L, YAO Q L, LUO Y, LU Z H. Immobilization of Ni-Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane[J]. J Alloys Compd,2020,835:155426. doi: 10.1016/j.jallcom.2020.155426
    [26]
    CAO N, YANG L, DU C, SU J, LUO W, CHENG G Z. Highly efficient dehydrogenation of hydrazine over graphene supported flower-like Ni-Pt nanoclusters at room temperature[J]. J Mater Chem A,2014,2(35):14344−14347. doi: 10.1039/C4TA02964J
    [27]
    XIA B Q, LIU T, LUO W, CHENG G Z. NiPt-MnOx supported on N-doped porous carbon derived from metal-organic frameworks for highly efficient hydrogen generation from hydrazine[J]. J Mater Chem A,2016,4(15):5616−5622. doi: 10.1039/C6TA00766J
    [28]
    XING W N, TU W G, HAN Z H, HU Y D, MENG Q Q, CHEN G. Template-induced high-crystalline g-C3N4 nanosheets for enhanced photocatalytic H2 evolution[J]. ACS Energy Lett,2018,3(3):514−519. doi: 10.1021/acsenergylett.7b01328
    [29]
    XU L X, LIU N, HONG B, CUI P, CHENG D G, CHEN F Q, AN Y, WAN C. Nickel-platinum nanoparticles immobilized on graphitic carbon nitride as highly efficient catalyst for hydrogen release from hydrous hydrazine[J]. RSC Adv,2016,6(38):31687−31691. doi: 10.1039/C6RA01335J
    [30]
    ZHANG W, JIAJUNWANG J J, LIU Z W, PI Y B, TAN R. Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets[J]. Green Energy Environ,2022,7:712−722. doi: 10.1016/j.gee.2020.11.019
    [31]
    张安琪, 姚淇露, 卢章辉. 水合肼分解产氢催化剂研究进展[J]. 化学学报,2021,79(7):885−902. doi: 10.6023/A21030126

    ZHANG An-qi, YAO Qi-lu, LU Zhang-hui. Recent progress on catalysts for hydrogen evolution from decomposition of hydrous hydrazine[J]. Acta Chim Sin,2021,79(7):885−902. doi: 10.6023/A21030126
    [32]
    SONG F Z, YANG X C, XU Q. Ultrafine bimetallic Pt-Ni nanoparticles achieved by metal-organic framework templated zirconia/porous carbon/reduced graphene oxide: Remarkable catalytic activity in dehydrogenation of hydrous hydrazine[J]. Small Methods,2020,4(1):1900707. doi: 10.1002/smtd.201900707
    [33]
    SINGH S K, XU Q. Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage[J]. J Am Chem Soc,2009,131:18032−18033. doi: 10.1021/ja908037t
    [34]
    SONG-Il O, YAN J M, WANG H L, WANG Z L, JIANG Q. Ni/La2O3 catalyst containing low content platinumerhodium for the dehydrogenation of N2H4·H2O at room temperature[J]. J Power Sources,2014,262:386−390. doi: 10.1016/j.jpowsour.2014.03.059
    [35]
    XIA B, CAO N, DAI H, SU J, WU X, LUO W, CHENG G Z. Bimetallic nickelerhodium nanoparticles supported on ZIF-8 as highly efficient catalysts for hydrogen generation from hydrazine in alkaline solution[J]. ChemCatChem,2014,6:2549−2552. doi: 10.1002/cctc.201402353
    [36]
    ZHANG M Y, LIU L, LU S, XU L X, AN Y, WAN C. Facile fabrication of NiPt/CNTs as an efficient catalyst for hydrogen production from hydrous hydrazine[J]. ChemistrySelect,2019,4:10494−10500. doi: 10.1002/slct.201902762
    [37]
    ZHENG J N, LIANG Y, LI G, JIN B Y, WAN C, YE M F, XU L X. Mn-modified graphitic carbon nitride-supported bimetallic PtNi nanoparticles for hydrogen generation from hydrous hydrazine[J]. ChemistrySelect, 2022, https://doi.org/10.1002/slct.202202690.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (320) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return