Volume 51 Issue 5
May  2023
Turn off MathJax
Article Contents
ZHAO Jiang-hong, QIN Yu-peng, WANG Qian-liang, QIAO Ze-yu, XUAN Jia-qi, ZHOU Wei. Bimetallic oxynitride-Co single atom composite electrocatalyst synergistically improve oxygen reduction reaction in wide pH range[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 693-702. doi: 10.19906/j.cnki.JFCT.2022095
Citation: ZHAO Jiang-hong, QIN Yu-peng, WANG Qian-liang, QIAO Ze-yu, XUAN Jia-qi, ZHOU Wei. Bimetallic oxynitride-Co single atom composite electrocatalyst synergistically improve oxygen reduction reaction in wide pH range[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 693-702. doi: 10.19906/j.cnki.JFCT.2022095

Bimetallic oxynitride-Co single atom composite electrocatalyst synergistically improve oxygen reduction reaction in wide pH range

doi: 10.19906/j.cnki.JFCT.2022095
Funds:  The project was supported by Key Research and Development Program of Shanxi Province (201903D121003), Guidance Foundation from the Central Government for Local Science and Technology Development (YDZJSX2021A001) and Special Program for Major Science and Technology of Shanxi Province (20181102019).
  • Received Date: 2022-11-08
  • Accepted Date: 2022-12-13
  • Rev Recd Date: 2022-12-10
  • Available Online: 2022-12-26
  • Publish Date: 2023-05-15
  • The lack of high performance and low cost oxygen reduction electrocatalysts, especially operating in the wide pH range, is one of the key obstacles restricting the large-scale applications of new energy conversion technologies such as fuel cells and metal-air batteries. In this work, based on the synthesis mechanism of conventional polymer-derived carbon materials, a bimetallic oxy-nitride (ComTinOxNy)-Co single atom (Co-NC) composite catalyst was prepared by an associated hydrothermal polymerization-pyrolysis method through selecting suitable precursor molecules and simultaneously introducing TiO2 nanoparticle in the process of polymerization. The bimetallic cobalt-titanium oxy-nitride Co-NC composite catalyst exhibits better ORR activity in a wide pH range (0−13) than the conresponding pure N-doped carbon nanotubes, titanium oxy-nitride/N-CNTs and Co-NC catalysts, providing a new idea for the development of ORR electrocatalysts with high performance and low cost.
  • loading
  • [1]
    THOMAS C. Fuel cell and battery electric vehicles compared[J]. Int J Hydrogen Energy,2009,34(15):6005−6020. doi: 10.1016/j.ijhydene.2009.06.003
    [2]
    WANG C. Fundamental models for fuel cell engineering[J]. Chem Rev,2004,104(10):4727−4765. doi: 10.1021/cr020718s
    [3]
    STEELE B, HEINZEL A. Materials for fuel-cell technologies[J]. Nature,2010,414(15):345−352.
    [4]
    LEE J, TAI K, CAO R, CHOI N, LIU M, LEE K, CHO J. Metal-air batteries with high energy density: Li-air versus Zn-air[J]. Adv Energy Mater,2011,1:34−50. doi: 10.1002/aenm.201000010
    [5]
    麦奕朗, 解相生, 王志达, 闫常峰, 刘光华. 热处理温度对Pt3Co二元金属催化剂氧还原性能影响及泛函密度理论研究[J]. 燃料化学学报,2022,50(1):114−121.

    MAI Yi-lang, XIE Xiang-sheng, WANG Zhi-da, YAN Chang-feng, LIU Guang-hua. Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations[J]. J Fuel Chem Technol,2022,50(1):114−121.
    [6]
    王思敏, 龚岩, 李恒, 赵丽丽, 郭庆华, 于广锁. 基于煤气化细渣构建碳基氧还原催化剂及其催化性能研究[J]. 燃料化学学报,2022,50(6):714−723.

    WANG Si-min, GONG Yan, LI Heng, ZHAO Li-li, GUO Qing-hua, YU Guang-suo. Preparation and properties of carbon-based electrocatalysts from gasification fine slag for oxygen reduction[J]. J Fuel Chem Technol,2022,50(6):714−723.
    [7]
    王可欣, 杨改秀, 孙永明, 李金平, 王春龙. 生物质不同部位制备炭基催化剂及其电催化氧还原性能[J]. 燃料化学学报,2022,49(6):818−826.

    WANG Ke-xin, YANG Gai-xiu, SUN Yong-ming, LI Jin-ping, WANG Chun-long. Preparation and investigation of carbon-based electrocatalysts from different parts of biomass for oxygen reduction reaction[J]. J Fuel Chem Technol,2022,49(6):818−826.
    [8]
    LIU K, WANG A, ZHANG T. Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts[J]. ACS Catal,2012,2:1165−1178. doi: 10.1021/cs200418w
    [9]
    GEWIRTH A, VARNELL J, ASCRO A. Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems[J]. Chem Rev,2018,118(5):2313−2339. doi: 10.1021/acs.chemrev.7b00335
    [10]
    HE Y, LIU S, PRIEST C, SHI Q, WU G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement[J]. Chem Soc Rev,2020,49(11):3484−3524. doi: 10.1039/C9CS00903E
    [11]
    CHISAKA M, ISHIHARA A, MORIOKA H, NAGAI T, YIN S, OHGI Y, MATSUZAWA K, MITSUSHIMA S, OTA K. Synthesis of nano-TaO(x) oxygen reduction reaction catalysts on multi-walled carbon nanotubes connected via a decomposition of oxy-tantalum phthalocyanine[J]. ACS Omega,2017,2(11):678−684.
    [12]
    JAOUEN F, HERRANZ J, LEFEVRE M, DODELET J P, KRAMM U I, HERRMANN I, BOGDANOFF P, MARUYAMA J. NAGAOKA T, GARSUCH A, DAHN J R, OLSON T, PYLYPENKO S, ATANASSOV P, USTINOV E A. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction[J]. ACS Appl Mater Interfaces,2009,1(8):1623−1639. doi: 10.1021/am900219g
    [13]
    CHISAKA M, IIJIMA T, YAGUCHI T, SAKURAI Y. Carbon-supported hafnium oxynitride as cathode catalyst for polymer electrolyte membrane fuel cells[J]. Electrochim Acta,2011,56(12):4581−4588. doi: 10.1016/j.electacta.2011.02.084
    [14]
    SHIBATA Y, ISHIHARA A, MITSUSHIMA S, KAMIYA N, OTA K. Performance improvement of oxide catalyst-doped anode-supported SOFCs for methane fuel[J]. Electrochem Solid-State Lett,2007,10:B43−B45. doi: 10.1149/1.2402983
    [15]
    DOI S, ISHIHARA A, MITSUSHIMA S, KAMOYA N, OTA K. Zirconium-based compounds for cathode of polymer electrolyte fuel cell[J]. J Electrochem Soc,2007,154:B362−B369. doi: 10.1149/1.2432061
    [16]
    KINUMOTO T, SOU Y, ONO, K, MATSUOKA M, ARAI Y, TSUMURA T, TOYODA M. Preparation of fibrous titania oxynitride-carbon catalyst and oxygen reduction reaction analysis in both acidic and alkaline media[J]. J Power Sources,2015,273:136−141. doi: 10.1016/j.jpowsour.2014.09.069
    [17]
    CHISAKA M, ISHIHARA A, OTA K, MURAMOTO H. Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells[J]. Electrochim Acta,2013,113(15):735−740.
    [18]
    CHISAKA M, ANDA Y, MURAMOTO H. Facile combustion synthesis of carbon-supported titanium oxynitride to catalyse oxygen reduction reaction in acidic media[J]. Electrochim Acta,2015,183:100−106. doi: 10.1016/j.electacta.2015.03.211
    [19]
    CHISAKA M, MURAMOTO H. Reduced graphene-oxide-supported titanium oxynitride as oxygen reduction reaction catalyst in acid media[J]. ChemElectroChem,2014,1:544−548. doi: 10.1002/celc.201300058
    [20]
    LIU R, MALOKI C, ARNOLD L, KOSHINO N, HIGASHIMURA H, BAUMGARTEN M, MULLEN K. Triangular trinuclear metal-N4 complexes with high electrocatalytic activity for oxygen reduction[J]. J Am Chem Soc,2011,133:10372−10375. doi: 10.1021/ja203776f
    [21]
    LIN L, ZHU Q, XU A W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions[J]. J Am Chem Soc,2014,136(31):11027−11033. doi: 10.1021/ja504696r
    [22]
    ZHAO Y, WATANABE K, HASHIMOTO K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer[J]. J Am Chem Soc,2012,134(48):19528−19531. doi: 10.1021/ja3085934
    [23]
    WU Z S, CHEN L, LIU J, PARVEZ K, LIANG H, SHU J, SACHDEV H, GRAF R, FENG X, MULLEN K. High-performance electrocatalysts for oxygen reduction derived from cobalt porphyrin-based conjugated mesoporous polymers[J]. Adv Mater,2014,26(9):1450−1455. doi: 10.1002/adma.201304147
    [24]
    CHEN Y, GAO R, JI S, LI H, TANG K, JIANG P, HU H, ZHANG Z, HAO H, QU Q, LIANG X, CHEN W, DONG J, WANG D, LI Y. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance[J]. Angew Chem Int Ed,2021,60(6):3212−3221. doi: 10.1002/anie.202012798
    [25]
    YIN P, YAO T, WU Y, ZHENG L, LIN Y, LIU W, JU H, ZHU J, HONG X, DENG Z, ZHOU G, WEI S, LI Y. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angew Chem Int Ed,2016,55(36):10800−10805. doi: 10.1002/anie.201604802
    [26]
    REN Y, REN Z, LI J, WANG S, YU J. Solvothermal synthesis of a dendritic TiNxOy nanostructure for oxygen reduction reaction electrocatalysis[J]. RSC Adv,2015,5:106439−106443. doi: 10.1039/C5RA17199G
    [27]
    CHISAKA M, YAMAMOTO Y, ITAGAKI N, HATTORI Y. Active site formation for oxygen reduction reaction on carbon-support-free titanium oxynitride with boosted activity in acidic media[J]. ACS Appl Energy Mater,2017,1:211−219.
    [28]
    ISHIHARA A, TAMURA M, OHGI Y, MATSUMOTO M, MATSUZAWA K, MITSUSHIMA S, IMAI H, OTA K. Emergence of oxygen reduction activity in partially oxidized tantalum carbonitrides: Roles of deposited carbon for oxygen-reduction-reaction-site creation and surface electron conduction[J]. J Phys Chem C,2013,117(37):18837−18844. doi: 10.1021/jp405247m
    [29]
    CHISAKA M, ISHIHARA A, SUITO K, OTA K, MURAMOTO H. Oxygen reduction reaction activity of nitrogen-doped titanium oxide in acid media[J]. Electrochim Acta,2013,88(15):697−707.
    [30]
    CHISAKA M, SUAUKI Y, IIJIMA T, SAKURAI Y. Effect of synthesis route on oxygen reduction reaction activity of carbon-supported hafnium oxynitride in acid media[J]. J Phys Chem C,2011,115(42):20610−20617. doi: 10.1021/jp2068107
    [31]
    TAKAGAKI A, TAKAHASHI Y, YIN F, TAKANABE K, KUBOTA J, DOMEN K. Highly dispersed niobium catalyst on carbon black by polymerized complex method as PEFC cathode catalyst[J]. J Electrochem Soc,2009,156:B811−B815. doi: 10.1149/1.3125801
    [32]
    CAO B, VEITH G, DIAZ R, LIU J, STACH E, ADZICR, KHALIFAH P. Cobalt molybdenum oxynitrides: Synthesis, structural characterization, and catalytic activity for the oxygen reduction reaction[J]. Angew Chem Int Ed,2013,125:10953−10957. doi: 10.1002/ange.201303197
    [33]
    YADAV M, SONKAR P, PRAKASH K, GANESAN V, SANKAR M, YADAV D, GUPTA R. Insight into efficient bifunctional catalysis: Oxygen reduction and oxygen evolution reactions using MWCNTs based composites with 5, 10, 15, 20-tetrakis (3’, 5’-dimethoxyphenyl) porphyrinato cobalt (II) and 5, 10, 15, 20-tetrakis (3’, 5’-dihydroxyphenyl) porphyrinato cobalt(II)[J]. Int J Hydrogen Energy,2020,45:9710−9722.
    [34]
    WANG X, ZHANG Z, GAI H, CHEN Z, SUN Z, HUANG M. An efficient pH-universal electrocatalyst for oxygen reduction: defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel[J]. Mater Today Energy,2020,17:100452−100462. doi: 10.1016/j.mtener.2020.100452
    [35]
    WASSNER M, ECKARDT M, GEBAUER C, HUSING N, BEHM R J. Spherical core-shell titanium (oxy)nitride@nitrided carbon composites as catalysts for the oxygen reduction reaction: Synthesis and electrocatalytic performance[J]. ChemElectroChem,2016,3:1641−1654. doi: 10.1002/celc.201600246
    [36]
    CHISAKA M, ANDO Y, YAMAMOTO Y, ITAGAKI N. A carbon-support-free titanium oxynitride catalyst for proton exchange membrane fuel cell cathodes[J]. Electrochim Acta,2016,214:165−172. doi: 10.1016/j.electacta.2016.08.032
    [37]
    SAHA N C, TOMPKINS H G. Titanium nitride oxidation chemistry: An X-ray photoelectron spectroscopy study[J]. J Appl Phys,1992,72(7):3072−3079. doi: 10.1063/1.351465
    [38]
    CHEN J, WEI X, ZHANG J, LUO Y, CHEN Y, WANG G, WANG R. Titanium nitride hollow spheres consisting of TiN nanosheets and their controllable carbon-nitrogen active sites as efficient electrocatalyst for oxygen reduction reaction[J]. Ind Eng Chem Res,2019,58(8):2741−2748. doi: 10.1021/acs.iecr.8b05719
    [39]
    TANG H, LUO J, YU J, ZHAO W, SONG H, LIAO S. Nanoconfined nitrogen-doped carbon-coated hierarchical TiCoN composites with enhanced ORR performance[J]. ChemElectroChem,2018,5(5):2041−2049.
    [40]
    DONG Y, DENG Y, ZENG J, SONG H, LIAO S. A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide[J]. J Mater Chem A,2017,5:5829−5837. doi: 10.1039/C6TA10496G
    [41]
    TIAN X L, WANG L, CHI B, XU Y, ZAMAN S, QI K, LIU H, LIAO S, XIA B Y. Oxygen reduction electrocatalysts for hydrogen-/metal-air fuel cells[J]. ACS Catal,2018,8(10):8970−8975. doi: 10.1021/acscatal.8b02710
    [42]
    WANG W, XUE S, LI J, WANG F, KANG Y, LEI Z. Cerium carbide embedded in nitrogen-doped carbon as a highly active electrocatalyst for oxygen reduction reaction[J]. J Power Sources,2017,359:487−493. doi: 10.1016/j.jpowsour.2017.05.033
    [43]
    JIANG H, LIU Y, HAO J, WANG Y, LI W, LI J. Self-assembly synthesis of cobalt and nitrogen co-embedded trumpet flower-like porous carbons for catalytic oxygen reduction in alkaline and acidic media[J]. ACS Sustainable Chem Eng,2017,5(6):5341−5350.
    [44]
    PARK J H, LEE C H, JU J M, LEE J H, SEOL J, LEE S U, KIM J H. Bifunctional covalent organic framework-derived electrocatalysts with modulated p-band centers for rechargeable Zn-air batteries[J]. Adv Funct Mater,2021,31:2101727−2101737. doi: 10.1002/adfm.202101727
    [45]
    MARCO J F, GANCEDO J R, GRACIA M, GAUTIER J L, RIOS E, BERRY F J. Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study[J]. J Solid State Chem,2000,153(1):74−81. doi: 10.1006/jssc.2000.8749
    [46]
    LIU K, HUANG X, WANG H, LI F, TANG Y, LI J, SHAO M. Co3O4-CeO2/C as a highly active electrocatalyst for oxygen reduction reaction in Al-air batteries[J] ACS Appl Mater Interfaces, 2016, 8(50): 34422-34430.
    [47]
    DENG W, JIANG H, CHEN C, YANG L, ZHANG Y, PENG S, WANG S, TAN Y, MA M, XIE Q. Co-, N-, and S-tridoped carbon derived from nitrogen- and sulfur-enriched polymer and cobalt salt for hydrogen evolution reaction[J]. ACS Appl Mater Interfaces,2016,8(21):13341−13347. doi: 10.1021/acsami.5b12666
    [48]
    ZHANG G, WANG B, LI L, YANG S. Phosphorus and yttrium codoped Co(OH)F nanoarray as highly efficient and bifunctional electrocatalysts for overall water splitting[J]. Small,2019,15:1904105−1904114. doi: 10.1002/smll.201904105
    [49]
    DEMARCONNAY L, COUTANCEAU C, LEGER J M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol[J]. Electrochim Acta,2004,49(25):4513−4521. doi: 10.1016/j.electacta.2004.05.009
    [50]
    LARGEOT C, PORTET C, CHMIOLA J, TABERNA P-L, GOGOTSI Y, SIMON P. Relation between the ion size and pore size for an electric double-layer capacitor[J]. J Am Chem Soc,2008,130(9):2730−2731. doi: 10.1021/ja7106178
    [51]
    BOTELLO L E, FELIU J M, CLIMENT V. Activation energy of hydrogen adsorption on Pt(111) in alkaline media: An impedance spectroscopy study at variable temperatures[J]. ACS Appl Mater Interfaces,2020,12(38):42911−42917. doi: 10.1021/acsami.0c13158
    [52]
    HUANG J, GAO Y, LUO J, WANG S, LI C, CHEN S, ZHANG J. Editors’ choice-review-impedance response of porous electrodes: Theoretical framework, physical models and applications[J]. J Electrochem Soc,2020,167:166503−166553. doi: 10.1149/1945-7111/abc655
    [53]
    JI M B, WEI Z D, CHEN S G, XIA M R, ZHANG Q, QI X Q, HU X H, DING W, LI L. Electrochemical impedance spectroscopy evidence of dimethyl-silicon-oil enhancing O2 transport in a porous electrode[J]. Electrochim Acta,2011,56:4797−4802. doi: 10.1016/j.electacta.2011.03.001
    [54]
    SHINOZAKI K, ZACK J W, PYLYPENKO S, PIVOVAR B S, KOCHA S S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: II. Influence of ink formulation, catalyst layer iniformity and thickness[J]. J Electrochem Soc,2015,162(12):F1384−F1396. doi: 10.1149/2.0551512jes
    [55]
    XUA S, KIMA Y, HIGGINSB D, YUSUFB M, JARAMILLOB T F, PRINA F B. Building upon the Koutecky-Levich equation for evaluation of next-generation oxygen reduction reaction catalysts[J]. Electrochim Acta,2017,255(20):99−108.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1134) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return