Volume 51 Issue 8
Aug.  2023
Turn off MathJax
Article Contents
WANG Xin-kun, ZHANG Jie-han, CHEN Zhao-hui, FAN Hui-ling, YU Jian, GAO Shi-qiu. Utilization of domestic waste biomass char in the context of carbon neutrality—low NOx decoupled combustion[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1165-1172. doi: 10.19906/j.cnki.JFCT.2023013
Citation: WANG Xin-kun, ZHANG Jie-han, CHEN Zhao-hui, FAN Hui-ling, YU Jian, GAO Shi-qiu. Utilization of domestic waste biomass char in the context of carbon neutrality—low NOx decoupled combustion[J]. Journal of Fuel Chemistry and Technology, 2023, 51(8): 1165-1172. doi: 10.19906/j.cnki.JFCT.2023013

Utilization of domestic waste biomass char in the context of carbon neutrality—low NOx decoupled combustion

doi: 10.19906/j.cnki.JFCT.2023013
Funds:  The project was supported by the National Natural Science Foundation of China (21878310).
  • Received Date: 2022-11-25
  • Accepted Date: 2023-02-02
  • Rev Recd Date: 2023-01-14
  • Available Online: 2023-02-27
  • Publish Date: 2023-08-01
  • The carbon and nitrogen content of township waste is high, and direct combustion causes a large amount of CO2 and NOx emissions. The biomass carbon after pyrolysis can reduce the NO in the combustion flue gas to N2, which can reduce NOx emissions while using carbon resources. Using 6 typical components in 4 kinds of rural solid waste (including paper, plastic, wood and textile) as experimental materials, the pyrolysis and decoupling combustion experiments are carried out in a fixed-bed reactor to investigate the effect of decoupling combustion on NOx emission. The experimental results showed that when the pyrolysis temperature was 700 ℃ and the particle size were 1.6–2.5 mm, the concentration of reducing gas in pyrolysis gas was higher and the reduction rate of NO in the char reached over 60%. By comparing the N conversion of decoupling combustion with that of normal combustion and air staged combustion, the NOx emission reduction rates of the decoupling combustion were 44.1% and 18.1%, respectively. Therefore, the decoupling combustion of rural solid waste based on pyrolysis is an effective way to control NOx emission, which is conducive to the clean and efficient transformation and utilization of rural solid waste.
  • loading
  • [1]
    郝彦龙, 侯成林, 付丽霞, 李洪瑞, 唐行鹏. 生活垃圾无害化处理工程设计实例[J]. 环境工程,2020,38(2):135−139. doi: 10.13205/j.hjgc.202002019

    HAO Yan-long, HOU Cheng-lin, FU Li-xia, LI Hong-rui, TANG Xing-peng. Engineering design of a municipal solid waste disposal project[J]. Environ Eng,2020,38(2):135−139. doi: 10.13205/j.hjgc.202002019
    [2]
    田阳, 项娟, 路垚, 李妍, 梁海恬, 何宗均. 生活垃圾堆肥处理研究[J]. 中国资源综合利用,2020,38(11):56−60. doi: 10.3969/j.issn.1008-9500.2020.11.016

    TIAN Yang, XIANG Juan, LU Yao, LI Yan, LIANG Hai-tian, HE Zong-jun. Research on domestic waste composting treatment[J]. China Res Compr Util,2020,38(11):56−60. doi: 10.3969/j.issn.1008-9500.2020.11.016
    [3]
    邓乂寰, 刘抒悦, 吴坤, 赵泉林, 叶正芳. 中国生活垃圾主要处理方式和年运行费用分析及“十四五”政策研究[J]. 环境科学与管理,2021,46(4):9−13. doi: 10.3969/j.issn.1673-1212.2021.04.007

    DENG Yi-huan, LIU Shu-yue, WU Kun, ZHAO Quan-lin, YE Zheng-fang. Analysis on disposal methods and annual costs of domestic waste in china and policy suggestions for the 14th five-year plan[J]. Environ Sci Manage,2021,46(4):9−13. doi: 10.3969/j.issn.1673-1212.2021.04.007
    [4]
    李丹, 陈冠益, 马文超, 段宁. 中国村镇生活垃圾特性及处理现状[J]. 中国环境科学,2018,38(11):4187−4197. doi: 10.3969/j.issn.1000-6923.2018.11.026

    LI Dan, CHEN Guan-yi, MA Wen-chao, DUAN Ning. Characteristics and treatment status of rural solid waste in China[J]. China Environ Sci,2018,38(11):4187−4197. doi: 10.3969/j.issn.1000-6923.2018.11.026
    [5]
    2021年中国统计年鉴[M]. 国家统计局, 2022.

    China Statistical Yearbook 2021 [M]. National Bureau of Statistics, 2022.
    [6]
    罗永浩, 陈祎, 杨明辉, 陆杰, 武桐. 生活垃圾典型组分热解及NOx前驱物析出特性研究[J]. 农业工程学报,2018,34(S1):143−148.

    LUO Yong-hao, CHEN Yi, YANG Ming-hui, LU Jie, WU Tong. Research on pyrolysis of typical component of municipal solid waste and release characteristics of NOx precursor[J]. Trans Chin Soc Agr Eng,2018,34(S1):143−148.
    [7]
    ATES F, MISKOLCZI N, BORSODI N. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties[J]. Bioresour Technol,2013,133:443−454. doi: 10.1016/j.biortech.2013.01.112
    [8]
    GLARBORG P, JENSEN A D, JOHNSSON J E. Fuel nitrogen conversion in solid fuel fired systems[J]. Prog Energy Combust Sci,2003,29(2):89−113. doi: 10.1016/S0360-1285(02)00031-X
    [9]
    TOMITA A. Reprint of: pyrolysis technologies for municipal solid waste: A review[J]. Fuel Process Technol,2001,71:18.
    [10]
    HE J, SONG W, GAO S, DONG L, BARZ M, LI J, LIN W. Experimental study of the reduction mechanisms of NO emission in decoupling combustion of coal[J]. Fuel Process Technol,2006,87(9):803−810. doi: 10.1016/j.fuproc.2006.04.003
    [11]
    尚校, 高士秋, 汪印, 董利, 许光文, 郭景海. 不同煤燃烧方式降低NOx排放比较及解耦燃烧应用[J]. 燃料化学学报,2012,40(6):673−670.

    SHANG Xiao, GAO Shi-qiu, WANG Yin, DONG Li, XU Guang-wen, GUO Jing-hai. Comparison of NOx reduction among different coal combustion methods and the application of decoupling combustion[J]. J Fuel Chem Technol,2012,40(6):673−670.
    [12]
    DONG L, GAO S, XU G. NO reduction over biomass char in the combustion process[J]. Energy Fuels,2010,24(1):446−450. doi: 10.1021/ef900913p
    [13]
    CHEN D, YIN L, WANG H, HE P. Reprint of: Pyrolysis technologies for municipal solid waste: A review[J]. Waste Manag,2015,37:116−136. doi: 10.1016/j.wasman.2015.01.022
    [14]
    BAI J S, YU C J, LI L M, WU P, LUO Z Y, NI M J. Experimental study on the NO and N2O formation characteristics during biomass combustion[J]. Energy Fuels,2013,27:515−522.
    [15]
    李旺. 基于褐煤半焦中温高效脱除烟气中NOx的研究[D]. 武汉: 武汉科技大学, 2017.

    LI Wang. Study on Efficient removal of NOx in flue gases by semi-coke in the medium temperature[D]. Wuhan: Wuhan University of Science and Technology, 2017.
    [16]
    KLOSS S, ZEHETNER F, DELLANTONIO A, ET AL. HAMID R, OTTNER F, LIEDTKE V, SCHWANNINGER M, GERZABEK M H, SOJA G. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties[J]. J Environ Qual,2012,41(4):990−1000. doi: 10.2134/jeq2011.0070
    [17]
    ZHAO J, WANG S, WU Z, MENG H, CHEN L. Hydrogen-rich syngas produced from the co-pyrolysis of municipal solid waste and wheat straw[J]. Int J Hydrogen Energy,2017,42(31):19701−19708. doi: 10.1016/j.ijhydene.2017.06.166
    [18]
    MORRIS R M. Effects of particle size and temperature on volatiles produced from coal by slow pyrolysis[J]. Fuel,1990,69(6):776−779. doi: 10.1016/0016-2361(90)90045-R
    [19]
    王瑜堂, 张军, 岳波, 王敦球, 於俊颖, 黄启飞, 吴小卉, 靳琪. 村镇生活垃圾重金属含量及其土地利用中的环境风险分析[J]. 农业环境科学学报,2017,36(8):1634−1639. doi: 10.11654/jaes.2016-1593

    WANG Yu-tang, ZHANG Jun, YUE Bo, WANG Dun-qiu, YU Jun-ying, HUANG Qi-fei, WU Xiao-hui, JIN Qi. Heavy metal content of the rural solid waste and its land utilization environmental risk analysis[J]. J Agro-Environ Sci,2017,36(8):1634−1639. doi: 10.11654/jaes.2016-1593
    [20]
    SIDDIQI H, KUMARI U, BISWAS S, MISHRA A, MEIKAP B C. A synergistic study of reaction kinetics and heat transfer with multi-component modelling approach for the pyrolysis of biomass waste[J]. Energy,2020,204:117933. doi: 10.1016/j.energy.2020.117933
    [21]
    PAN L, DAI F, PEI S, HUANG J, LIU S. Influence of particle size and temperature on the yield and composition of products from the pyrolysis of Jimsar (China) oil shale[J]. J Anal Appl Pyrolysis,2021,157:105211. doi: 10.1016/j.jaap.2021.105211
    [22]
    WANG D, CHEN Z, LI C, WANG D, LI Y, YANG H, LIU Z, YU J, GAO S. High-quality tar production from coal in an integrated reactor: Rapid pyrolysis in a drop tube and downstream volatiles upgrading over char in a moving bed[J]. Fuel,2021,285:119156. doi: 10.1016/j.fuel.2020.119156
    [23]
    邓飞虎, 王黎. 轮胎粒径对热解产物的影响[J]. 应用化工,2019,48(6):1382−1384. doi: 10.3969/j.issn.1671-3206.2019.06.031

    DENG Fei-hu, WANG Li. Influences of tire size on pyrolysis products[J]. Appl Chem Ind,2019,48(6):1382−1384. doi: 10.3969/j.issn.1671-3206.2019.06.031
    [24]
    CHEN Y, FANG Y, YANG H, XIN S, ZHANG X, WANG X, CHEN H. Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures[J]. Fuel,2019,248:1−7. doi: 10.1016/j.fuel.2019.03.070
    [25]
    WANG C, BI H, LIN Q, JIANG X, JIANG C. Co-pyrolysis of sewage sludge and rice husk by TG-FTIR-MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics[J]. Renewable Energy,2020,160:1048−1066. doi: 10.1016/j.renene.2020.07.046
    [26]
    XIAO R, YANG W. Influence of temperature on organic structure of biomass pyrolysis products[J]. Renewable Energy,2013,(50):136−140.
    [27]
    TOMITA A. Suppression of nitrogen oxides emission by carbonaceous reductants[J]. Fuel Process Technol,2001,71(1):53−70.
    [28]
    ZAWADZKI J, WISNIEWSKI M. Adsorption and decomposition of NO on carbon and carbon-supported catalysts[J]. Carbon,2002,40(1):119−124. doi: 10.1016/S0008-6223(01)00081-1
    [29]
    ZHANG H, JIANG X, LIU J, SHEN J. New insights into the heterogeneous reduction reaction between NO and char-bound nitrogen[J]. Ind Eng Chem Res,2014,53(15):6307−6315. doi: 10.1021/ie403920j
    [30]
    牛欣, 肖军. 污泥化学链燃烧过程中氮迁移转化特性研究[J]. 燃料化学学报,2017,45(4):506−513. doi: 10.3969/j.issn.0253-2409.2017.04.016

    NIU Xin, XIAO Jun. Nitrogen transformation in chemical looping combustion of sewage sludge[J]. J Fuel Chem Technol,2017,45(4):506−513. doi: 10.3969/j.issn.0253-2409.2017.04.016
    [31]
    LIAO X, SHAO J, ZHANG S, LI X, YANG H, WANG X, CHEN H. Effects of CO2 and CO on the reduction of NO over calcined limestone or char in oxy-fuel fluidised bed combustion[J]. IET Renew Power Gener,2019,13(10):1633−1640. doi: 10.1049/iet-rpg.2018.6277
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (331) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return