Volume 51 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
LI Si-qi, WEI Xu-song, WANG Hong, QING Ming, SUO Hai-yun, LÜ Zhen-gang, GUO Hui-chuang, LIU Ying, YU Xin, YANG Yong, LI Yong-wang. The effect of crystal plane on Fe3O4 carbonization[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1282-1290. doi: 10.19906/j.cnki.JFCT.2023017
Citation: LI Si-qi, WEI Xu-song, WANG Hong, QING Ming, SUO Hai-yun, LÜ Zhen-gang, GUO Hui-chuang, LIU Ying, YU Xin, YANG Yong, LI Yong-wang. The effect of crystal plane on Fe3O4 carbonization[J]. Journal of Fuel Chemistry and Technology, 2023, 51(9): 1282-1290. doi: 10.19906/j.cnki.JFCT.2023017

The effect of crystal plane on Fe3O4 carbonization

doi: 10.19906/j.cnki.JFCT.2023017
Funds:  The project was supported by the National Natural Science Foundation of China (21972162 and 22025804) and Jungar Banner Important Science & Technology Specific Projects (2022ZD-03)
  • Received Date: 2022-10-28
  • Accepted Date: 2022-12-13
  • Rev Recd Date: 2022-12-11
  • Available Online: 2023-01-10
  • Publish Date: 2023-09-30
  • In the Fischer-Tropsch synthesis reaction, Fe-based catalysts are widely used in large-scale indirect coal liquefaction industry due to their low price, high activity, and low CH4 selectivity. The catalytic performance is closely related to the catalyst particle size, surface structure and composition. Since reductive carbonization is a key step in the activation of iron-based catalysts, in this work, Fe3O4-O (expose the {111} crystal planes) with different particle size, and similar particle size but exposing different crystal planes, {111} and {110} (Fe3O4-RD), have been prepared to explore the effect of particle size and surface structure on the carbonization process. The results show that the 50 nm Fe3O4-O particles change more significantly than the one with large particle size (2–10 μm) after carbonization. In-situ XRD was used to monitor the phase change of Fe3O4 with exposing different surface planes during carbonization. The results show that 150 nm Fe3O4-O and Fe3O4-RD particles behave differently in carbonization rate and have different iron carbide concentration in the end, which indicates the carbonization process can be affected by exposed crystal planes. TEM analysis reveals that Fe3O4@FexC core-shell structure formed after carbonization.
  • loading
  • [1]
    XIANG H, YONG Y, YONGWANG L. Indirect coal-to-liquids technology from fundamental research to commercialization[J]. Sci Sin Chim,2014,44(12):1876−1892. doi: 10.1360/N032014-00218
    [2]
    ZHAI P, SUN G, ZHU Q, MA D. Fischer-Tropsch synthesis nanostructured catalysts: Understanding structural characteristics and catalytic reaction[J]. Nanotechnol Rev,2013,2(5):547−576. doi: 10.1515/ntrev-2013-0025
    [3]
    JAHANGIRI H, BENNETT J, MAHJOUBI P, WILSON K, GU S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas[J]. Catal Sci Technol,2014,4(8):2210−2229. doi: 10.1039/C4CY00327F
    [4]
    DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [5]
    JUNG H, THOMSON W J. Dynamic X-ray diffraction study of an unsupported iron catalyst in Fischer-Tropsch synthesis[J]. J Catal,1992,134(2):654−667. doi: 10.1016/0021-9517(92)90350-Q
    [6]
    ERTL G. Reactions at surfaces: from atoms to complexity (Nobel lecture)[J]. Angew Chem Int Ed,2008,47(19):3524−3535. doi: 10.1002/anie.200800480
    [7]
    GOODMAN D W. Correlations between surface science models and “real-world” catalysts[J]. J Phys Chem,1996,100(31):13090−13102. doi: 10.1021/jp953755e
    [8]
    GOODMAN D W. Model studies in catalysis using surface science probes[J]. Chem Rev,1995,95(3):523−536. doi: 10.1021/cr00035a004
    [9]
    ZHANG Z, WANG S-S, SONG R, CAO T, LUO L, CHEN X, GAO Y, LU J, LI W-X, HUANG W. The most active Cu facet for low-temperature water gas shift reaction[J]. Nat Commun,2017,8(1):1−10. doi: 10.1038/s41467-016-0009-6
    [10]
    MAY Y A, WANG W-W, YAN H, WEI S, JIA C-J. Insights into facet-dependent reactivity of CuO-CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction[J]. Chin J Catal,2020,41(6):1017−1027. doi: 10.1016/S1872-2067(20)63533-1
    [11]
    VARANDA L, JAFELICCI JR M, TARTAJ P, O’GRADY K, GONZALEZ-CARRENO T, MORALES M, MUNOZ T, SERNA C. Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere[J]. J Appl Phys,2002,92(4):2079−2085. doi: 10.1063/1.1496124
    [12]
    LI P-X, QU L-M, ZHANG C-H, REN X-B, WANG H-X, ZHANG J-L, MU Y-W, LÜ B-L. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. J Fuel Chem Technol,2021,49(10):1558−1566. doi: 10.1016/S1872-5813(21)60154-8
    [13]
    HUANG Y, QI Q, PAN H, LEI X, LIU X. Facile preparation of octahedral Fe3O4/RGO composites and its microwave electromagnetic properties[J]. J Mater Sci: Mater Electron,2016,27(9):9577−9583. doi: 10.1007/s10854-016-5011-6
    [14]
    GENG B, MA J, YOU J. Controllable synthesis of single-crystalline Fe3O4 polyhedra possessing the active basal facets[J]. Cryst Growth Des,2008,8(5):1443−1447. doi: 10.1021/cg700931u
    [15]
    FISCHER N, CLAPHAM B, FELTES T, VAN STEEN E, CLAEYS M. Size-dependent phase transformation of catalytically active nanoparticles captured in situ[J]. Angew Chem Int Ed,2014,53(5):1342−1345. doi: 10.1002/anie.201306899
    [16]
    LIANG J, LI L, LUO M, WANG Y. Fabrication of Fe3O4 octahedra by a triethanolamine-assisted hydrothermal process[J]. Cryst Res Technol,2011,46(1):95−98. doi: 10.1002/crat.201000485
    [17]
    CHERNAVSKII P. The carburization kinetics of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett,1997,45(3):215−219.
    [18]
    WU B, BAI L, XIANG H, LI Y-W, ZHANG Z, ZHONG B. An active iron catalyst containing sulfur for Fischer-Tropsch synthesis[J]. Fuel,2004,83(2):205−212. doi: 10.1016/S0016-2361(03)00253-9
    [19]
    JANBROERS S, CROZIER P, ZANDBERGEN H, KOOYMAN P. A model study on the carburization process of iron-based Fischer-Tropsch catalysts using in situ TEM-EELS[J]. Appl Catal B: Environ,2011,102(3/4):521−527. doi: 10.1016/j.apcatb.2010.12.034
    [20]
    AMELSE J, BUTT J, SCHWARTZ L. Carburization of supported iron synthesis catalysts[J]. J Phys Chem,1978,82(5):558−563. doi: 10.1021/j100494a012
    [21]
    NIEMANTSVERDRIET J, VAN DER KRAAN A, VAN DIJK W, VAN DER BAAN H. Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mossbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements[J]. J Phys Chem,2002,84(25):3363−3370.
    [22]
    HERRANZ T, ROJAS S, PÉREZ-ALONSO F J, OJEDA M, TERREROS P, FIERRO J L G. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. J Catal,2006,243(1):199−211. doi: 10.1016/j.jcat.2006.07.012
    [23]
    BUKUR D B, LANG X, MUKESH D, ZIMMERMAN W H, ROSYNEK M P, LI C. Binder/support effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis[J]. Ind Eng Chem Res,1990,29(8):1588−1599. doi: 10.1021/ie00104a003
    [24]
    YU X, HUO C-F, LI Y-W, WANG J, JIAO H. Fe3O4 surface electronic structures and stability from GGA + U[J]. Surf Sci,2012,606(9-10):872−879. doi: 10.1016/j.susc.2012.02.003
    [25]
    LI S, KRISHNAMOORTHY S, LI A, MEITZNER G D, IGLESIA E. Promoted iron-based catalysts for the Fischer-Tropsch synthesis: design, synthesis, site densities, and catalytic properties[J]. J Catal,2002,206(2):202−217. doi: 10.1006/jcat.2001.3506
    [26]
    LI S, MEITZNER G D, IGLESIA E. Structure and site evolution of iron oxide catalyst precursors during the Fischer-Tropsch synthesis[J]. J Phys Chem B,2001,105(24):5743−5750. doi: 10.1021/jp010288u
    [27]
    WANG J, HUANG S, HOWARD S, MUIR B W, WANG H, KENNEDY D F, MA X. Elucidating surface and bulk phase transformation in Fischer-Tropsch synthesis catalysts and their influences on catalytic performance[J]. ACS Catal,2019,9(9):7976−7983. doi: 10.1021/acscatal.9b01104
    [28]
    ZHU J, WANG P, ZHANG X, ZHANG G, LI R, LI W, SENFTLE T P, LIU W, WANG J, WANG Y. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation[J]. Sci Adv,2022,8(5):eabm3629. doi: 10.1126/sciadv.abm3629
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (349) PDF downloads(51) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return