留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ce改性对CuLDH催化CO2加氢制甲醇性能的影响

刘昊然 于志庆 黄文斌 魏强 姜鹏 周亚松

刘昊然, 于志庆, 黄文斌, 魏强, 姜鹏, 周亚松. Ce改性对CuLDH催化CO2加氢制甲醇性能的影响[J]. 燃料化学学报(中英文), 2024, 52(2): 159-170. doi: 10.1016/S1872-5813(23)60392-5
引用本文: 刘昊然, 于志庆, 黄文斌, 魏强, 姜鹏, 周亚松. Ce改性对CuLDH催化CO2加氢制甲醇性能的影响[J]. 燃料化学学报(中英文), 2024, 52(2): 159-170. doi: 10.1016/S1872-5813(23)60392-5
LIU Haoran, YU Zhiqing, HUANG Wenbin, WEI Qiang, JIANG Peng, ZHOU Yasong. Effect of Ce modification on the performance of CuLDH catalyst for CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 159-170. doi: 10.1016/S1872-5813(23)60392-5
Citation: LIU Haoran, YU Zhiqing, HUANG Wenbin, WEI Qiang, JIANG Peng, ZHOU Yasong. Effect of Ce modification on the performance of CuLDH catalyst for CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 159-170. doi: 10.1016/S1872-5813(23)60392-5

Ce改性对CuLDH催化CO2加氢制甲醇性能的影响

doi: 10.1016/S1872-5813(23)60392-5
基金项目: 国家自然科学基金(22078360)资助
详细信息
    通讯作者:

    E-mail: zhouyasong2011@163.com

  • 中图分类号: O643

Effect of Ce modification on the performance of CuLDH catalyst for CO2 hydrogenation to methanol

Funds: The project was supported by National Natural Science Foundation of China (22078360).
  • 摘要: 通过向CuMgAl水滑石(CuLDH)催化剂中添加不同量的Ce,合成了一系列Ce改性的CuLDH-Cex催化剂。采用X射线衍射(XRD)、N2吸附-脱附(BET)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等分析手段对催化剂的理化性质进行表征。结果表明,添加Ce会改变Cu-LDH催化剂的水滑石结构,适量的Ce会增大催化剂的比表面积,改善了Cu颗粒的分散度。同时,适量的Ce有利于增加催化剂表面强碱性位点的密度和氧空位的数量,促进了CO2的吸附和转化。Ce有利于调变催化剂表面的Cu+/Cu0比例,较高的Cu+/Cu0比例有利于甲醇的生成。当Ce/Cu比例为0.3时,在空速为9000 mL/(g·h),温度为240 ℃,压力为2.5 MPa的条件下,催化剂的CO2的转化率为7.5%,甲醇选择性为78.4%,甲醇的时空收率最高可达362.8 g/(kg·h)。通过原位红外光谱(in-situ DRIFTS)证明CuLDH-Ce0.3催化剂在CO2加氢合成甲醇过程中遵循HCOO*反应路径。
  • FIG. 2925.  FIG. 2925.

    FIG. 2925.  FIG. 2925.

    图  1  CuLDH-Cex催化剂前驱体的XRD谱图

    Figure  1  XRD patterns of CuLDH-Cex catalysts precursors

    图  2  CuLDH-Cex催化剂煅烧后的XRD谱图

    Figure  2  XRD patterns of CuLDH-Cex catalysts after calcination

    图  3  CuLDH-Cex 催化剂煅烧后的SEM图片

    Figure  3  SEM images of CuLDH-Cex catalysts after calcination

    (a): CuLDO-Ce0; (b): CuLDO-Ce0.1; (c): CuLDO-Ce0.3; (d): CuLDO-Ce0.5; (e): CuLDO-Ce0.7.

    图  4  CuLDH-Cex催化剂的(a)N2吸附-脱附等温线和(b)孔径分布

    Figure  4  (a) N2 adsorption-desorption isotherm and (b) pore size distribution of CuLDH-Cex catalysts

    图  5  CuLDH-Cex 催化剂还原后的TEM图和CuLDO-Ce0.3 的EDX元素图

    Figure  5  TEM images of CuLDH-Cex catalysts after reduction and EDX elemental mapping of CuLDO-Ce0.3 (a): CuLDO-Ce0; (b): CuLDO-Ce0.1; (c): CuLDO-Ce0.3; (d): CuLDO-Ce0.5; (e): CuLDO-Ce0.7.

    图  6  CuLDH-Cex催化剂还原后的XPS谱图

    Figure  6  XPS spectra of CuLDH-Cex catalysts after reduction

    图  7  CuLDH-Cex催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of CuLDH-Cex catalysts

    图  8  CuLDH-Cex催化剂的CO2-TPD谱图

    Figure  8  CO2-TPD profiles of CuLDH-Cex catalysts

    图  9  CuLDH-Cex催化剂的催化活性

    Figure  9  Catalytic performance of CuLDH-Cex catalysts Reaction condition: 240 ℃, 2.5 MPa, 9000 mL/(g·h).

    图  10  CuLDH-Ce0.3催化剂的催化性能随时间的变化(a), 反应前后的XRD谱图 (b)和反应后的TEM图(c)

    Figure  10  Catalytic performance of CuLDH-Ce0.3 catalyst over time (a), XRD patterns before and after reaction (b), and TEM images after reaction (c) Reaction condition: 240 ℃, 2.5 MPa, 9000 mL/(g·h).

    图  11  CuLDH-Ce0.3催化剂在CO2加氢过程中中间物种浓度的原位红外光谱谱图

    Figure  11  In-situ infrared spectra of intermediate species concentration during CO2 hydrogenation on CuLDH-Ce0.3 catalyst

    表  1  CuLDH-Cex催化剂的物理化学性质

    Table  1  Physical and chemical properties of CuLDH-Cex catalysts

    CatalystMolar ratio Cu/Mg/Al/CeaSBETb/
    (m2·g−1)
    vpb/
    (cm3·g−1)
    dpb/
    nm
    dCu c/
    nm
    dCud /
    %
    SCud/
    (m2·g−1)
    CuLDH-Ce09.9/29.7/10.4/0199.50.41
    6.2
    4.9
    23.5
    32.1
    CuLDH-Ce0.110.2./29.9/9.8/1.1208.40.477.33.726.335.4
    CuLDH-Ce0.310.1/30.3/9.7/2.9205.60.43
    6.5
    4.5
    24.2
    33.2
    CuLDH-Ce0.59.8/29.8/10.2/5.2194.90.35
    5.3
    5.2
    20.4
    29.6
    CuLDO-Ce0.710.3/29.7/9.9/7.1182.30.314.47.218.125.3
    a: Measured by ICP; b: Calculated by BET and BJH equations; c: Measured by TEM; d: Measured by N2O titration.
    下载: 导出CSV

    表  2  CuLDH-Cex催化剂碱性位点密度

    Table  2  The basic sites density of CuLDH-Cex catalysts

    CatalystTotal basic
    sites/
    (μmol·g−1)
    Weakly basic
    sites/
    (μmol·g−1)
    Moderately basic
    sites/
    (μmol·g−1)
    Density of moderately
    basic site/
    (μmol·m2)
    CuLDH-Ce0232.855.7177.10.89
    CuLDH-Ce0.1256.523.2233.31.12
    CuLDH-Ce0.3297.234.5262.71.28
    CuLDH-Ce0.5210.348.8161.50.83
    CuLDO-Ce0.7198.664.3134.30.74
    下载: 导出CSV
  • [1] SHA F, HAN Z, TANG S, et al. Hydrogenation of carbon dioxide to methanol over non-Cu-based heterogeneous catalysts[J]. ChemSusChem,2020,13(23):6160−6181. doi: 10.1002/cssc.202002054
    [2] LI S, GUO L, ISHIHARA T. Hydrogenation of CO2 to methanol over Cu/AlCeO catalyst[J]. Catal Today,2020,339:352−361. doi: 10.1016/j.cattod.2019.01.015
    [3] CHANG K, ZHANG H, CHENG M J, et al. Application of ceria in CO2 conversion catalysis[J]. ACS Catal,2019,10(1):613−631.
    [4] JIA X, SUN K, WANG J, et al. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. J Energy Chem,2020,50:409−415. doi: 10.1016/j.jechem.2020.03.083
    [5] TAN Q, SHI Z, WU D. CO2 hydrogenation to methanol over a highly active Cu-Ni/CeO2-nanotube catalyst[J]. Ind Eng Chem Res,2018,57(31):10148−10158. doi: 10.1021/acs.iecr.8b01246
    [6] GAO P, ZHANG L N, LI S G, et al. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels[J]. ACS Cent Sci,2020,6(10):1657−1670. doi: 10.1021/acscentsci.0c00976
    [7] ZHAN F, FAN L, XU K, et al. Hierarchical sheet-like Cu/Zn/Al nanocatalysts derived from LDH/MOF composites for CO2 hydrogenation to methanol[J]. J CO2 Util,2019,33:222−232. doi: 10.1016/j.jcou.2019.05.021
    [8] LU Z, WANG J, SUN K H, et al. CO2 hydrogenation to methanol over Rh/In2O3-ZrO2 catalyst with improved activity[J]. Green Chem Eng ,2022,3(2):165−170.
    [9] LI M M J, CHEN C P, AYVALI T, et al. CO2 Hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors[J]. ACS Catal,2018,8(5):4390−4401. doi: 10.1021/acscatal.8b00474
    [10] SHI Z, TAN Q, WU D. Enhanced CO2 hydrogenation to methanol over TiO2 nanotubes-supported CuO-ZnO-CeO2 catalyst[J]. Appl Catal A: Gen,2019,581:58−66. doi: 10.1016/j.apcata.2019.05.019
    [11] CHENG S Y, KOU J W, GAO Z H, et al. Preparation of complexant-modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors and its highly efficient application in direct synthesis of isobutanol and ethanol from syngas[J]. Appl Catal A: Gen,2018,556:113−220. doi: 10.1016/j.apcata.2018.02.027
    [12] ZHANG F, ZHANG Y L, LIU Y, et al. Synthesis of Cu/Zn/Al/Mg catalysts on methanol production by different precipitation methods[J]. Mol Catal,2017,441:190−198. doi: 10.1016/j.mcat.2017.08.015
    [13] XIAO S, ZHANG Y, GAO P, et al. Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Today,2017,281:327−36. doi: 10.1016/j.cattod.2016.02.004
    [14] LI S Z, WANG Y, YANG B, et al. A highly active and selective mesostructured Cu/AlCeO catalyst for CO2 hydrogenation to methanol[J]. Appl Catal A: Gen,2019,571:51−60. doi: 10.1016/j.apcata.2018.12.008
    [15] ZHANG C, YANG H Y, GAO P, et al. Preparation and CO2 hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition-precipitation method[J]. J CO2 Util,2017,17:263−272. doi: 10.1016/j.jcou.2016.11.015
    [16] OUYANG B, TAN W L, LIU B. Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation[J]. Catal Commun,2017,95:36−39. doi: 10.1016/j.catcom.2017.03.005
    [17] GAO P, XIE R Y, WANG H, et al. Cu/Zn/Al/Zr catalysts via phase-pure hydrotalcite-like compounds for methanol synthesis from carbon dioxide[J]. J CO2 Util,2015,11:41−48. doi: 10.1016/j.jcou.2014.12.008
    [18] FANG X, MEN Y H, WU F, et al. Moderate-pressure conversion of H2 and CO2 to methanol via adsorption enhanced hydrogenation[J]. Int J Hydrogen Energy,2019,44(39):21913−21925. doi: 10.1016/j.ijhydene.2019.06.176
    [19] GAO P, ZHONG L S, ZHANG L N, et al. Yttrium oxide modified Cu/ZnO/Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Catal Sci Technol,2015,5(9):4365−4377.
    [20] GAO P, YANG H Y, ZHANG L N, et al. Fluorinated Cu/Zn/Al/Zr hydrotalcites derived nanocatalysts for CO2 hydrogenation to methanol[J]. J CO2 Util,2016,16:32−41. doi: 10.1016/j.jcou.2016.06.001
    [21] GAO P, LI F, ZHAO N, et al. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A: Gen,2013,468:442−452. doi: 10.1016/j.apcata.2013.09.026
    [22] LIM A, YEO J W, ZENG H C. Preparation of CuZn-doped MgAl-layered double hydroxide catalysts through the memory effect of hydrotalcite for effective hydrogenation of CO2 to Methanol[J]. ACS Appl Energy Mater,2023,6(2):782−794. doi: 10.1021/acsaem.2c03045
    [23] CORED J, MAZARIO J, CERDA-MORENO C, et al. Enhanced methanol production over non-promoted Cu-MgO-Al2O3 Materials with ex-solved 2 nm Cu particles: Insights from an operando spectroscopic study[J]. ACS Catal,2022,12(7):3845−3857. doi: 10.1021/acscatal.1c06044
    [24] FANG X, MEN Y H, WU F, et al. Improved methanol yield and selectivity from CO2 hydrogenation using a novel Cu-ZnO-ZrO2 catalyst supported on Mg-Al layered double hydroxide (LDH)[J]. J CO2 Util,2019,29:57−64. doi: 10.1016/j.jcou.2018.11.006
    [25] WANG X, ALABSI M H, ZHENG P, et al. PdCu supported on dendritic mesoporous CexZr1-xO2 as superior catalysts to boost CO2 hydrogenation to methanol[J]. J Colloid Interface Sci,2022,611:739−751. doi: 10.1016/j.jcis.2021.11.172
    [26] YOO C J, LEE D W, KIM M S, et al. The synthesis of methanol from CO/CO2/H2 gas over Cu/Ce1-xZrxO2 catalysts[J]. J Mol Catal A: Chem,2013,378:255−262. doi: 10.1016/j.molcata.2013.06.023
    [27] LI N, WANG W W, SONG L X, et al. CO2 hydrogenation to methanol promoted by Cu and metastable tetragonal CexZryOz interface[J]. J Energy Chem,2022,68:771−779. doi: 10.1016/j.jechem.2021.12.053
    [28] HU X S, ZHAO C Y, GUAN Q X, et al. Selective hydrogenation of CO2 over a Ce promoted Cu-based catalyst confined by SBA-15[J]. Inorg Chem Front,2019,6(7):1799−1812. doi: 10.1039/C9QI00397E
    [29] WANG W W, QU Z P, SONG L X, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction[J]. J Energy Chem,2020,40:22−30. doi: 10.1016/j.jechem.2019.03.001
    [30] ZHANG J P, SUN X H, WU C Y, et al. Engineering Cu+/CeZrO interfaces to promote CO2 hydrogenation to methanol[J]. J Energy Chem,2023,77:45−53. doi: 10.1016/j.jechem.2022.10.034
    [31] SHAO Y W, WANG J Z, DU H N, et al. Importance of magnesium in Cu-based catalysts for selective conversion of biomass-derived furan compounds to diols[J]. ACS Sustainable Chem Eng,2020,8(13):5217−5228. doi: 10.1021/acssuschemeng.9b07841
    [32] GOSWAMI K, ANANTHAKRISHNAN R. Ce-doped CuMgAl oxide as a redox couple mediated catalyst for visible light aided photooxidation of organic pollutants[J]. ACS Appl Nano Mater,2019,2(9):6030−6039. doi: 10.1021/acsanm.9b01557
    [33] LI D L, CAI Y B, CHEN C Q, et al. Magnesium-aluminum mixed metal oxide supported copper nanoparticles as catalysts for water-gas shift reaction[J]. Fuel,2016,184:382−389. doi: 10.1016/j.fuel.2016.06.131
    [34] ZHU J D, CIOLCA D, LIU L, et al. Flame synthesis of Cu/ZnO-CeO2 catalysts: Synergistic metal-support interactions promote CH3OH selectivity in CO2 hydrogenation[J]. ACS Catal,2021,11(8):4880−4892. doi: 10.1021/acscatal.1c00131
    [35] CHEN G Q, YU J, LI G H, et al. Cu+-ZrO2 interfacial sites with highly dispersed copper nanoparticles derived from Cu@UiO-67 hybrid for efficient CO2 hydrogenation to methanol[J]. Int J Hydrogen Energy,2023,48(7):2605−2616. doi: 10.1016/j.ijhydene.2022.10.172
    [36] NIU J T, LIU H Y, JIN Y, et al. Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: Insights from experimental work and theoretical analysis[J]. Int J Hydrogen Energy,2022,47(15):9183−9200. doi: 10.1016/j.ijhydene.2022.01.021
    [37] XU Y N, GAO Z H, PENG L, et al. A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol[J]. J Catal,2022,414:236−244. doi: 10.1016/j.jcat.2022.09.011
    [38] XU Y M, DING Z L, QIU R, et al. Effect of support and reduction temperature in the hydrogenation of CO2 over the Cu-Pd bimetallic catalyst with high Cu/Pd ratio[J]. Int J Hydrogen Energy,2022,47(65):27973−27985. doi: 10.1016/j.ijhydene.2022.06.110
    [39] WANG Y D, YU H R, HU Q, et al. Application of microimpinging stream reactor coupled with ultrasound in Cu/CeZrOx solid solution catalyst preparation for CO2 hydrogenation to methanol[J]. Renewable Energy,2023,202:834−843. doi: 10.1016/j.renene.2022.11.075
    [40] SUN X C, JIN Y F, CHENG Z Z, et al. Dual active sites over Cu-ZnO-ZrO2 catalysts for carbon dioxide hydrogenation to methanol[J]. J Environ Sci,2023,131:162−172. doi: 10.1016/j.jes.2022.10.002
    [41] ZHANG C C, WANG L T, ETIM U J, et al. Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol[J]. J Catal,2022,413:284−296. doi: 10.1016/j.jcat.2022.06.026
    [42] SHEN C Y, BAO Q Q, XUE W J, et al. Synergistic effect of the metal-support interaction and interfacial oxygen vacancy for CO2 hydrogenation to methanol over Ni/In2O3 catalyst: A theoretical study[J]. J Energy Chem,2022,65:623−629. doi: 10.1016/j.jechem.2021.06.039
    [43] LI J, DU T, LI Y N, et al. Novel layered triple hydroxide sphere CO2 adsorbent supported copper nanocluster catalyst for efficient methanol synthesis via CO2 hydrogenation[J]. J Catal,2022,409:24−32. doi: 10.1016/j.jcat.2022.03.020
    [44] GUO T, GUO Q, LI S Z, et al. Effect of surface basicity over the supported Cu-ZnO catalysts on hydrogenation of CO2 to methanol[J]. J Catal,2022,407:312−321. doi: 10.1016/j.jcat.2022.01.035
    [45] COLLINS S E, BALTANAS M A, DELGDO J J, et al. CO2 hydrogenation to methanol on Ga2O3-Pd/SiO2 catalysts: Dual oxide-metal sites or (bi)metallic surface sites?[J]. Catal Today,2021,381:154−62. doi: 10.1016/j.cattod.2020.07.048
    [46] SHA F, TANG S, TANG C Z, et al. The role of surface hydroxyls on ZnZrOx solid solution catalyst in CO2 hydrogenation to methanol[J]. Chin J Catal,2023,45:162−173. doi: 10.1016/S1872-2067(22)64176-7
    [47] DASIREDDY V D B C, LIKOZAR B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity[J]. Renewable Energy,2019,140:452−460. doi: 10.1016/j.renene.2019.03.073
    [48] HAN X Y, LI M S, CHANG X, et al. Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol[J]. J Energy Chem,2022,71:277−287. doi: 10.1016/j.jechem.2022.03.034
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  240
  • HTML全文浏览量:  63
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-18
  • 修回日期:  2023-09-21
  • 录用日期:  2023-09-21
  • 网络出版日期:  2023-11-10
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回