留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子层沉积技术调控分子筛基催化剂研究进展

魏丽 王树元 闫梦霞 朱地 陶智超 徐丹

魏丽, 王树元, 闫梦霞, 朱地, 陶智超, 徐丹. 原子层沉积技术调控分子筛基催化剂研究进展[J]. 燃料化学学报(中英文), 2024, 52(2): 285-292. doi: 10.19906/j.cnki.JFCT.2023056
引用本文: 魏丽, 王树元, 闫梦霞, 朱地, 陶智超, 徐丹. 原子层沉积技术调控分子筛基催化剂研究进展[J]. 燃料化学学报(中英文), 2024, 52(2): 285-292. doi: 10.19906/j.cnki.JFCT.2023056
WEI Li, WANG Shuyuan, YAN Mengxia, ZHU Di, TAO Zhichao, XU Dan. Recent progress in regulating of zeolite-based catalysts by atomic layer deposition technology[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 285-292. doi: 10.19906/j.cnki.JFCT.2023056
Citation: WEI Li, WANG Shuyuan, YAN Mengxia, ZHU Di, TAO Zhichao, XU Dan. Recent progress in regulating of zeolite-based catalysts by atomic layer deposition technology[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 285-292. doi: 10.19906/j.cnki.JFCT.2023056

原子层沉积技术调控分子筛基催化剂研究进展

doi: 10.19906/j.cnki.JFCT.2023056
基金项目: 国家自然科学基金(22002064),山东省自然科学基金(ZR2020QB050,ZR2021MB046),山东省青创计划(2021KJ033),济南市“高校20条”项目(202228036)和科教产-强基计划(2022PY019)资助
详细信息
    通讯作者:

    Tel: + 86-0531-82605937, E-mail: syw.fe@outlook.com

    xudan07@qlu.edu.cn

  • 中图分类号: O643.36

Recent progress in regulating of zeolite-based catalysts by atomic layer deposition technology

Funds: The project was supported by National Natural Science Foundation of China (22002064),Shandong Provincial Natural Science Foundation (ZR2020QB050,ZR2021MB046), Qingchuang Science and Technology Support Project of Shandong Colleges and Universities (2021KJ033), Plan for the 20 New Colleges and Universities in Jinan (202228036), Plan for Integration of Science, Education and Industry (2022PY019)
  • 摘要: 分子筛基催化剂在多相催化研究领域具有重要的应用,但调控活性中心粒子的结构及其在分子筛上的空间位置仍比较困难,是科研界和工业界共同面临的巨大挑战。原子层沉积(ALD)是一种先进的薄膜沉积技术,利用其自限制生长优势,可在原子级别实现对金属粒子生长过程的精准调控。本工作综述了ALD技术在制备分子筛基催化剂方面的应用,主要包括利用ALD技术控制活性位点在分子筛上的生长落位、修饰分子筛骨架结构以及选择性沉积膜调变分子筛表面结构。利用ALD技术设计和调控活性组分结构促进了分子筛基催化剂的发展,但由于分子筛孔道结构复杂且存在缺陷位,因此,ALD技术在分子筛基催化剂的设计调控及大规模应用方面仍具有挑战性,也是今后研究工作的重点。
  • FIG. 2935.  FIG. 2935.

    FIG. 2935.  FIG. 2935.

    图  1  Zn在ZSM-5分子筛上的沉积过程示意图[7]

    Figure  1  The deposition model of Zn on ZSM-5 zeolite[7](with permission from Elsevier)

    图  2  MeCpPtMe3分子在KL分子筛内的吸附-扩散行为[18]

    Figure  2  The energetics of diffusion progress of the MeCpPtMe3 through a KL zeolite channel:(a) the energetics of MeCpPtMe3 in the inner and outer surfaces of KL zeolite, (b) diffusion energetics of MeCpPtMe3 into/between KL zeolite cages[18](with permission from Royal Society of Chemistry)

    图  3  多级孔KL分子筛的合成及ALD调控Pt团簇空间分布的机理过程[21]

    Figure  3  Formation mechanism of hierarchical porous KL zeolite and the spatial locations of Pt clusters based on the ALD deposition mechanism [21](with permission from Elsevier)

    图  4  在KL分子筛上利用ALD调控PtFe-n/KL催化剂合成的示意图[6]

    Figure  4  Schematic diagram of the procedure for the synthesis of PtFe-n/KL catalysts via ALD on the KL zeolite[6](with permission from American Chemical Society)

    图  5  在BaKL分子筛上制备亚纳米Pt团簇的过程示意图[34]

    Figure  5  Illustration of the preparation of sub-nanometric Pt on the BaKL[34](with permission from Elsevier)

    图  6  (a)−(f) Pt/KL和Pt/BKL催化剂的HAADF-TEM图及尺寸分布;(g)、(h)n-C7芳构化活性评价[34]

    Figure  6  (a)−(f) High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image of Pt/KL and Pt/BKL catalysts with size distribution of Pt; (g), (h) Catalytic performance on n-C7 aromatization[34](with permission from Elsevier)

    图  7  ALD技术调控Pt-Zn沉积KL分子筛的合成策略[35]

    Figure  7  Synthetic strategy of Pt-Zn deposited KL catalyst by ALD method[35](with permission from Elsevier)

    图  8  利用ALD调控甲醇沉积于Y分子筛外表面、Pt沉积于Y分子筛孔道内以制备Pt/KYCx催化剂的示意图[43]

    Figure  8  Schematic illustration of preparing Pt/KYCx catalysts via ALD with methanol located on the outer surface and Pt inside channels of Y zeolite(with permission from Elsevier)[43]

  • [1] KOSINOV N, LIU C, HENSEN E J M, et al. Engineering of transition metal catalysts confined in zeolites[J]. Chem Mater,2018,30:3177−3198. doi: 10.1021/acs.chemmater.8b01311
    [2] O’NEILL B J, JACKSON D H K, LEE J, et al. Catalyst design with atomic layer deposition[J]. ACS Catal,2015,5:1804−1825. doi: 10.1021/cs501862h
    [3] 高亚, 徐丹, 王树元, 等. 原子层沉积构建高性能催化剂的研究进展[J]. 化工进展,2021,40:4242−4252. doi: 10.16085/j.issn.1000-6613.2020-1960

    GAO Ya, XU Dan, WANG Shuyuan, et al. Recent progress in fabrication of high efficient catalysts by atomic layer deposition[J]. Chem Ind Eng Prog,2021,40:4242−4252. doi: 10.16085/j.issn.1000-6613.2020-1960
    [4] GAO Z, QIN Y. Design and properties of confined nanocatalysts by atomic layer deposition[J]. Accounts Chem Res,2017,50:2309−2316. doi: 10.1021/acs.accounts.7b00266
    [5] DETAVERNIER C, DENDOOVEN J, SREE S P, et al. Tailoring nanoporous materials by atomic layer deposition[J]. Chem Soc Rev,2011,40:5242−5253. doi: 10.1039/c1cs15091j
    [6] XU D, WANG S, WU B, et al. Highly dispersed single-atom Pt and Pt clusters in the Fe-modified KL zeolite with enhanced selectivity for n-heptane aromatization[J]. ACS Appl Mater Inter,2019,11:29858−29867. doi: 10.1021/acsami.9b08137
    [7] JIANG F, HUANG J, NIU L, et al. Atomic layer deposition of ZnO thin films on ZSM-5 zeolite and its catalytic performance in chichibabin reaction[J]. Catal Lett,2015,145:947−954. doi: 10.1007/s10562-014-1472-5
    [8] ZHANG J, LU Z, WU W, et al. Mesopore differences between pillared lamellar MFI and MWW zeolites probed by atomic layer deposition of titania and consequences on photocatalysis[J]. Microporous Mesoporous Mater,2019,276:260−269. doi: 10.1016/j.micromeso.2018.10.009
    [9] WANG F, XIAO W, GAO L, et al. The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol[J]. Catal Sci Technol,2016,6:3074−3086. doi: 10.1039/C5CY01651G
    [10] HWANG S, PARDITKA B, CSERHáTI C, et al. IR microimaging of direction-dependent uptake in MFI-type crystals[J]. Chem Ing Technol,2017,89:1686−1693. doi: 10.1002/cite.201700128
    [11] CAO L, LIU W, LUO Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2[J]. Nature,2019,565:631−635. doi: 10.1038/s41586-018-0869-5
    [12] DING K, GULEC A, JOHNSON A M, et al. Identification of active sites in CO oxidation andwater-gas shift over supported Pt catalysts[J]. Science,2015,350:189−192. doi: 10.1126/science.aac6368
    [13] SUN S H, ZHANG G X, GAUQUELIN N, et al. Single-atom catalysis using Pt/graphene achieved through atomic Layer deposition[J]. Sci Rep,2013,3:1775−1783. doi: 10.1038/srep01775
    [14] SHAMZHY M, OPANASENKO M, CONCEPCIÓN P, et al. New trends in tailoring active sites in zeolite-based catalysts[J]. Chem Soc Rev,2019,48:1095−1149. doi: 10.1039/C8CS00887F
    [15] VUORI H, SILVENNOINEN R J, LINDBLAD M, et al. Beta zeolite-supported iridium catalysts by gas phase deposition[J]. Catal Lett,2009,131:7−15. doi: 10.1007/s10562-009-0068-y
    [16] VUORI H, PASANEN A, LINDBLAD M, et al. The effect of iridium precursor on oxide-supported iridium catalysts prepared by atomic layer deposition[J]. Appl Surf Sci,2011,257:4204−4210. doi: 10.1016/j.apsusc.2010.12.021
    [17] GU X-M, ZHANG B, LIANG H-J, et al. Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid[J]. J Fuel Chem Technol,2017,45:714−722. doi: 10.1016/S1872-5813(17)30035-X
    [18] XU D, WU B S, REN P J, et al. Controllable deposition of Pt nanoparticles into a KL zeolite by atomic layer deposition for highly efficient reforming of n-heptane to aromatics[J]. Catal Sci Technol,2017,7:1342−1350. doi: 10.1039/C6CY02652D
    [19] XU D, WANG S Y, WU B S, et al. Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization[J]. J Catal,2018,365:163−173. doi: 10.1016/j.jcat.2018.07.001
    [20] YAN M, XU D, WU B, et al. Insight into the performance of different Pt/KL catalysts for n-alkane (C6–C8) aromatization: catalytic role of zeolite channels[J]. Catal Sci Technol,2022,12:1610−1618. doi: 10.1039/D1CY02090K
    [21] WANG S, GAO Y, WEI L, et al. Engineering spatial locations of Pt in hierarchically porous KL zeolite by atomic layer deposition with enhanced n-heptane aromatization[J]. Fuel,2023,337:126852. doi: 10.1016/j.fuel.2022.126852
    [22] WANG S, ZHANG D, MA Y, et al. Aqueous solution synthesis of Pt-M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane[J]. ACS Appl Mater Inter,2014,6:12429−12435. doi: 10.1021/am502335j
    [23] ZHANG B, GUO X, LIANG H, et al. Tailoring Pt-Fe2O3 interfaces for selective reductive coupling reaction to synthesize imine[J]. ACS Catal,2016,6:6560−6566. doi: 10.1021/acscatal.6b01756
    [24] LIU L, LOPEZ-HARO M, LOPES C W, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J]. Nat Mater,2019,18:866−873. doi: 10.1038/s41563-019-0412-6
    [25] YANG H, CHEN Y, QIN Y. Application of atomic layer deposition in fabricating high-efficiency electrocatalysts[J]. Chin J Catal,2020,41:227−241. doi: 10.1016/S1872-2067(19)63440-6
    [26] SONG J, MA H, TIAN Z, et al. The effect of Fe on Pt particle states in Pt/KL catalysts[J]. Appl Catal A: Gen,2015,492:31−37. doi: 10.1016/j.apcata.2014.12.017
    [27] GOULD T D, LUBERS A M, CORPUZ A R, et al. Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition[J]. ACS Catal,2015,5:1344−1352. doi: 10.1021/cs501265b
    [28] HACKLER R A, MCANALLY M O, SCHATZ G C, et al. Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy[J]. J Am Chem Soc,2017,139:2456−2463. doi: 10.1021/jacs.6b12709
    [29] YAN H, LIN Y, WU H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene[J]. Nat Commun,2017,8:1070−1081. doi: 10.1038/s41467-017-01259-z
    [30] GEERTS L, RAMACHANDRAN R K, DENDOOVEN J, et al. Creation of gallium acid and platinum metal sites in bifunctional zeolite hydroisomerization and hydrocracking catalysts by atomic layer deposition[J]. Catal Sci Technol,2020,10:1778−1788. doi: 10.1039/C9CY02610J
    [31] WANG F, KANG X, ZHOU M, et al. Sn and Zn modified HZSM-5 for one-step catalytic upgrading of glycerol to value-added aromatics: Synergistic combination of impregnated Sn particles, ALD introduced ZnO film and HZSM-5 zeolite[J]. Appl Catal A: Gen,2017,539:80−89. doi: 10.1016/j.apcata.2017.04.005
    [32] YAN M, WU B, YANG Y, et al. Highly efficient Sn-modified Pt/KY catalyst for n-octane reforming: the synergistic effect of Pt in different electronic states[J]. Catal Sci Technol,2023,13:1677−1685. doi: 10.1039/D3CY00011G
    [33] WANG S, XU D, ZHU D, et al. Elucidating the restructuring-induced highly active bimetallic Pt-Co/KL catalyst for the aromatization of n-heptane[J]. Chem Commun,2020,56:892−895. doi: 10.1039/C9CC08845H
    [34] WANG S, GAO Y, YI F, et al. Regulation of sub-nanometric platinum on BaKL zeolite for boosting n-heptane aromatization[J]. Fuel,2022,328:125281. doi: 10.1016/j.fuel.2022.125281
    [35] XU D, WEI L, YAN M, et al. Zinc-assisted nanometric Pt cluster stabilized on KL zeolite via atomic layer deposition for the n-heptane aromatization[J]. Appl Catal A: Gen,2023,663:119308. doi: 10.1016/j.apcata.2023.119308
    [36] MA Y, CHEN X, GUAN Y, et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology[J]. J Catal,2021,397:44−57. doi: 10.1016/j.jcat.2021.03.022
    [37] RYOO R, KIM J, JO C, et al. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis[J]. Nature,2020,585:221−224. doi: 10.1038/s41586-020-2671-4
    [38] LIU S, REN J, ZHU S, et al. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal,2015,330:485−496. doi: 10.1016/j.jcat.2015.07.027
    [39] WANG Y, TAO Z, WU B, et al. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization[J]. J Catal,2015,322:1−13. doi: 10.1016/j.jcat.2014.11.004
    [40] SREE S P, DENDOOVEN J, KORÁNYI T I, et al. Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement[J]. Catal Sci Technol, 2011, 1: 218−221.
    [41] SREE S P, DENDOOVEN J, MAGUSIN P C M M, THOMAS K, et al. Hydroisomerization and hydrocracking activity enhancement of a hierarchical ZSM-5 zeolite catalyst via atomic layer deposition of aluminium[J]. Catal Sci Technol,2016,6:6177−6186. doi: 10.1039/C6CY00780E
    [42] ZHAI L, ZHANG B, LIANG H, et al. The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone[J]. Sci China Chem,2021,64:1088−1095. doi: 10.1007/s11426-020-9968-x
    [43] YAN M, XU D, WANG S, et al. Selective regulation of Pt clusters inside KY zeolite using atomic layer deposition for n-octane reforming[J]. Fuel,2022,330:125671. doi: 10.1016/j.fuel.2022.125671
    [44] VERHEYEN E, PULINTHANATHU SREE S, THOMAS K, et al. Catalytic activation of OKO zeolite with intersecting pores of 10- and 12-membered rings using atomic layer deposition of aluminium[J]. Chem Commun,2014,50:4610−4612. doi: 10.1039/C3CC49028A
    [45] MIES M, REBROV E, JANSEN J, et al. Method for the in situ preparation of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications[J]. J Catal,2007,247:328−338. doi: 10.1016/j.jcat.2007.02.007
    [46] MURAZA O, REBROV E, CHEN J, et al. Microwave-assisted hydrothermal synthesis of zeolite Beta coatings on ALD-modified borosilicate glass for application in microstructured reactors[J]. Chem Eng J,2008,135:S117−S120. doi: 10.1016/j.cej.2007.07.003
  • 加载中
图(9)
计量
  • 文章访问数:  257
  • HTML全文浏览量:  89
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-07-10
  • 录用日期:  2023-07-13
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回