留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载体对Pt/WO3-ZrO2催化临氢异构反应性能的影响

李伟 迟克彬 马怀军 刘浩 曲炜 田志坚

李伟, 迟克彬, 马怀军, 刘浩, 曲炜, 田志坚. 载体对Pt/WO3-ZrO2催化临氢异构反应性能的影响[J]. 燃料化学学报(中英文), 2017, 45(3): 329-336.
引用本文: 李伟, 迟克彬, 马怀军, 刘浩, 曲炜, 田志坚. 载体对Pt/WO3-ZrO2催化临氢异构反应性能的影响[J]. 燃料化学学报(中英文), 2017, 45(3): 329-336.
LI Wei, CHI Ke-bin, MA Huai-jun, LIU Hao, QU Wei, TIAN Zhi-jian. Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 329-336.
Citation: LI Wei, CHI Ke-bin, MA Huai-jun, LIU Hao, QU Wei, TIAN Zhi-jian. Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 329-336.

载体对Pt/WO3-ZrO2催化临氢异构反应性能的影响

详细信息
    通讯作者:

    田志坚, Tel:0411-84379151, E-mail:tianz@dicp.ac.cn

  • 中图分类号: O643.361

Effect of supports on the catalytic performance of Pt/WO3-ZrO2 catalysts for hydroisomerization

  • 摘要: 以平衡吸附过氧钨酸的水合氧化锆为前驱体,经焙烧得到WO3-ZrO2固体酸,并采用XRD、UV-vis、NH3-TPD等手段考察了过氧钨酸吸附液浓度及焙烧温度对WO3-ZrO2固体酸组成、结构及酸性的影响。通过BET、H2-TPR、H2-TPD等表征手段和正戊烷临氢异构反应,考察了负载铂后相应催化剂的结构、还原与氢吸附性质及其催化正戊烷临氢异构反应的性能。结果表明,焙烧温度为700℃时,随着吸附液浓度的增加,所得载体酸度及相应催化剂比表面积均先增加后减小,且在吸附液浓度为82 mmol W/L时达到最大值。吸附液浓度为59 mmol W/L时,随着焙烧温度的升高,所得载体四方相氧化锆含量、酸度及相应催化剂比表面积均降低。吸附液浓度为82 mmol W/L、焙烧温度为700℃所得载体负载0.5%(质量分数)铂后催化活性最高。该催化剂在250℃常压临氢操作、n(H2)/nn-C5H12)为3、WHSV为1.0 h-1的条件下,催化正戊烷异构反应中异戊烷收率可达57.7%。
  • 图  1  WO3-ZrO2载体的XRD谱图

    Figure  1  XRD patterns of WO3-ZrO2 supports

    图  2  不同过氧钨酸吸附液浓度 (a) 及焙烧温度 (b) 所得WO3-ZrO2载体的E~[F(R) ·E]1/2曲线

    Figure  2  E~[F(R) ·E]1/2 curves of WO3-ZrO2 supports with different peroxotungstic acid concentration (a) and calcination temperature (b)

    NC: not calcined

    图  3  Pt/WO3-ZrO2催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of Pt/WO3-ZrO2 catalysts

    图  4  Pt/WO3-ZrO2催化剂的H2-TPD谱图

    Figure  4  H2-TPD profiles of Pt/WO3-ZrO2 catalysts

    图  5  Pt/WO3-ZrO2催化剂催化正戊烷临氢异构反应所得异戊烷收率

    Figure  5  Isopentane yields of n-pentane hydroisomerization reactions catalysed by Pt/WO3-ZrO2 reaction condition: atmospheric pressure, 250℃, n(H2)/n(n-C5H12)=3, WHSV=1.0 h-1

    表  1  WO3-ZrO2载体中四方相氧化锆的体积分数

    Table  1  Volume fractions of tetragonal zirconia in WO3-ZrO2 supports

    Support Vt /%
    WZ (23, 700) 17
    WZ (59, 700) 97
    WZ (82, 700) 100
    WZ (108, 700) 100
    WZ (185, 700) 100
    WZ (59, 800) 22
    WZ (59, 900) 6.5
    下载: 导出CSV

    表  2  WO3-ZrO2载体的酸位分布

    Table  2  Acid distribution data of WO3-ZrO2 supports

    Support Acid amount w/(μmol·g-1)/Temperature t/℃ Total acid amount w/(μmol·g-1)
    peak 1 peak 2 peak 3
    WZ (23, 700) 36/175 69/240 178/363 283
    WZ (59, 700) 55/174 89/231 166/318 310
    WZ (82, 700) 74/176 162/243 244/329 480
    WZ (108, 700) 71/177 134/239 212/326 417
    WZ (185, 700) 69/175 135/234 258/326 461
    WZ (59, 800) 54/170 87/228 160/323 301
    WZ (59, 900) 34/168 53/223 85/317 171
    下载: 导出CSV

    表  3  Pt/WO3-ZrO2催化剂的比表面积与孔结构

    Table  3  Surface area and porosity data of Pt/WO3-ZrO2 catalysts

    Catalyst Surface area A/(m2·g-1) Pore size d/nm Pore volume v/(cm3·g-1)
    Pt/WZ (23, 700) 44.1 12.3 0.17
    Pt/WZ (59, 700) 67.4 7.9 0.19
    Pt/WZ (82, 700) 79.6 6.6 0.19
    Pt/WZ (108, 700) 72.6 5.6 0.13
    Pt/WZ (185, 700) 70.5 7.9 0.18
    Pt/WZ (59, 800) 50.7 6.9 0.21
    Pt/WZ (59, 900) 23.0 17.1 0.11
    下载: 导出CSV
  • [1] 徐铁钢, 吴显军, 王刚, 李瑞峰.轻质烷烃异构化催化剂研究进展[J].化工进展, 2015, 34(2):397-401. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201502017.htm

    XU Tie-gang, WU Xian-jun, WANG Gang, LI Rui-feng. Light paraffin isomerization catalyst and its development[J]. Chem Ind Eng Prog, 2015, 34(2):397-401. http://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ201502017.htm
    [2] WEYDA H, KÖHLER E. Modern refining concepts-an update on naphtha-isomerization to modern gasoline manufacture[J]. Catal Today, 2003, 81(1):51-55. doi: 10.1016/S0920-5861(03)00101-9
    [3] 孔晓翠, 濮仲英, 于中伟.固体超强酸催化正戊烷异构化反应失活因素的考察[J].石油学报 (石油加工), 1999, 15(4):33-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG904.006.htm

    KONG Xiao-cui, PU Zhong-ying, YU Zhong-wei. Study on deactivation of solid super-acid catalyst for n-pentane isomerization[J]. Acta Pet Sin (Pet Process Sect), 1999, 15(4):33-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SXJG904.006.htm
    [4] RESOFSZKI G, MUHLER M, SPRENGER S, WILD U, PAÁL Z. Electron spectroscopy of sulfated zirconia, its activity in n-hexane conversion and possible reasons of its deactivation[J]. Appl Catal A:Gen, 2003, 240(1/2):71-81. https://www.researchgate.net/publication/223640368_Electron_spectroscopy_of_sulfated_zirconia_its_activity_in_n-hexane_conversion_and_possible_reasons_of_its_deactivation
    [5] 汪颖军, 张海菊, 孙博, 田性刚. WO3/ZrO2催化烷烃异构化反应研究进展[J].石油学报 (石油加工), 2009, 25(2):283-290. http://www.cnki.com.cn/Article/CJFDTotal-SXJG200902031.htm

    WANG Ying-jun, ZHANG Hai-ju, SUN Bo, TIAN Xing-gang. Research progress of WO3/ZrO2 in alkane isomerization[J]. Acta Pet Sin (Pet Process Sect), 2009, 25(2):283-290. http://www.cnki.com.cn/Article/CJFDTotal-SXJG200902031.htm
    [6] 宋华, 宋华林, 崔雪涵, 张旭. Pd含量对SO42-/ZrO2-WO3固体超强酸催化剂其异构化性能的影响[J].燃料化学学报, 2012, 40(11):1346-1352. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18066.shtml

    SONG Hua, SONG Hua-lin, CUI Xue-han, ZHANG Xu. Effect of Pd content on the catalytic performance of SO42-/ZrO2-WO3 solid superacid in pentane isomerization[J]. J Fuel Chem Technol, 2012, 40(11):1346-1352. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18066.shtml
    [7] BARTON D G, SOLED S L, MEITZNER G D, FUENTES G A, IGLESIA E. Structural and catalytic characterization of solid acids based on zirconia modified by tungsten oxide[J]. J Catal, 1999, 181(1):57-72. doi: 10.1006/jcat.1998.2269
    [8] SANTIESTEBAN J G, VARTULI J C, HAN S, BASTIAN R D, CHANG C D. Influence of the preparative method on the activity of highly acidic WOx/ZrO2 and the relative acid activity compared with zeolites[J]. J Catal, 1997, 168(2):431-441. doi: 10.1006/jcat.1997.1658
    [9] SIGNORETTO M, SCARPA M, PINNA F, STRUKUL G, CANTON P, BENEDETTI A. WO3/ZrO2 catalysts by sol-gel processing[J]. J Non-Cryst Solids, 1998, 225(1):178-183.
    [10] VALIGI M, GAZZOLI D, PETTITI I, MATTEI G, COLONNA S, DE ROSSI S, FERRARIS G. WOx/ZrO2 catalysts. Part 1. Preparation, bulk and surface characterization[J]. Appl Catal A:Gen, 2002, 231(1/2):159-172.
    [11] HERNÁNDEZ-PICHARDO M L, MONTOYA J A, DEL ANGEL P, VARGAS A, NAVARRETE J. A comparative study of the WOx dispersion on Mn-promoted tungstated zirconia catalysts prepared by conventional and high-throughput experimentation[J]. Appl Catal A:Gen, 2008, 345(2):233-240. doi: 10.1016/j.apcata.2008.05.005
    [12] VALIGI M, GAZZOLI D, CIMINO A, PROVERBIO E. Ionic size and metal uptake of chromium (Ⅵ), molybdenum (Ⅵ), and tungsten (Ⅵ) species on ZrO2-based catalyst precursors[J]. J Phys Chem B, 1999, 103(51):11318-11326. doi: 10.1021/jp9922716
    [13] LORIDANT S, FECHE C, ESSAYEM N, FIGUERAS F. WOx/ZrO2 catalysts prepared by anionic exchange:In situ Raman investigation from the precursor solutions to the calcined catalysts[J]. J Phys Chem B, 2005, 109(12):5631-5637. doi: 10.1021/jp044494o
    [14] SHUPYK I, PIQUEMAL J Y, BRIOT E, VAULAY M J, CONNAN C, TRUONG S, ZAITSEV V, BOZON-VERDURAZ F. The use of low-nuclearity oxoperoxo molybdenum species to achieve high dispersions on zirconia materials[J]. Appl Catal A:Gen, 2007, 325(1):140-153. doi: 10.1016/j.apcata.2007.03.033
    [15] 田戈, 徐云鹏, 徐竹生, 田志坚, 林励吾. Al助剂对超强酸WOx/ZrO2机械应力稳定性的改善[J].催化学报, 2008, 29(5):415-417. doi: 10.1016/S1872-2067(08)60041-8

    TIAN Ge, XU Yun-peng, XU Zhu-sheng, TIAN Zhi-jian, LIN Li-wu. Effect of aluminum on the mechanical stress stability of WOx/ZrO2 superacid[J]. Chin J Catal, 2008, 29(5):415-417. doi: 10.1016/S1872-2067(08)60041-8
    [16] TORAYA H, YOSHIMURA M, SOMIYA S. Calibration curve for quantitative-analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction[J]. J Am Ceram Soc, 1984, 67(6):C119-C121.
    [17] BARTON D G, SHTEIN M, WILSON R D, SOLED S L, IGLESIA E. Structure and electronic properties of solid acids based on tungsten oxide nanostructures[J]. J Phys Chem B, 1999, 103(4):630-640. doi: 10.1021/jp983555d
    [18] ZHAO B Y, XU X P, MA H R, SUN D H, GAO J M. Monolayer dispersion of oxides and salts on surface of ZrO2 and its application in preparation of ZrO2-supported catalysts with high surface areas[J]. Catal Lett, 1997, 45(3/4):237-244. doi: 10.1023/A:1019048503124
    [19] 王春明, 赵璧英, 谢有畅.盐类和氧化物在载体上自发单层分散研究新进展[J].催化学报, 2003, 24(6):475-482. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200306016.htm

    WANG Chun-ming, ZHAO Bi-ying, XIE You-chang. Advances in the studies of spontaneous monolayer dispersion of oxides and salts on supports[J]. Chin J Catal, 2003, 24(6):475-482. http://www.cnki.com.cn/Article/CJFDTOTAL-CHUA200306016.htm
    [20] SCHEITHAUER M, GRASSELLI R K, KNÖZINGER H. Genesis and Structure of WOx/ZrO2 Solid Acid Catalysts[J]. Langmuir, 1998, 14(11):3019-3029. doi: 10.1021/la971399g
    [21] JIN T, YAMAGUCHI T, TANABE K. Mechanism of acidity generation on sulfur-promoted metal-oxides[J]. J Phys Chem, 1986, 90(20):4794-4796. doi: 10.1021/j100411a017
    [22] PANAGIOTOPOULOU P, KONDARIDES D I. Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO2 catalysts[J]. J Catal, 2008, 260(1):141-149. doi: 10.1016/j.jcat.2008.09.014
    [23] TSUCHIYA S, AMENOMIYA Y, CVETANOVI-R J. Study of metal catalysts by temperature programmed desorption. Ⅱ. Chemisorption of hydrogen on platinum[J]. J Catal, 1970, 19(3):245-255.
    [24] KHOOBIAR S. Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles[J]. J Phys Chem, 1964, 68(2):411-412. doi: 10.1021/j100784a503
    [25] IGLESIA E, BARTON D G, SOLED S L, MISEO S, BAUMGARTNER J E, GATES W E, FUENTES G A, MEITZNER G D. Selective isomerization of alkanes on supported tungsten oxide acids[J]. Stud Surf Sci Catal, 1996, 101:533-542. doi: 10.1016/S0167-2991(96)80264-3
    [26] SHISHIDO T, HATTORI H. Spillover of hydrogen over zirconium oxide promoted by sulfate ion and platinum[J]. Appl Catal A:Gen, 1996, 146(1):157-164. doi: 10.1016/0926-860X(96)00161-5
    [27] TRIWAHYONO S, YAMADA T, HATTORI H. IR study of acid sites on WO3-ZrO2[J]. Appl Catal A:Gen, 2003, 250(1):75-81. doi: 10.1016/S0926-860X(03)00303-X
    [28] CHEN K, BELL A T, IGLESIA E. The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions[J]. J Catal, 2002, 209(1):35-42. doi: 10.1006/jcat.2002.3620
    [29] BAERTSCH C D, SOLED S L, IGLESIA E. Isotopic and chemical titration of acid sites in tungsten oxide domains supported on zirconia[J]. J Phys Chem B, 2001, 105(7):1320-1330. doi: 10.1021/jp003073d
    [30] PRINS R. Hydrogen Spillover. Facts and fiction[J]. Chem Rev, 2012, 112(5):2714-2738. doi: 10.1021/cr200346z
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  32
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-30
  • 修回日期:  2017-01-24
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-03-10

目录

    /

    返回文章
    返回