留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light

ZHANG Hong-guang FENG Li-juan LI Chun-hu WANG Liang

张红光, 冯丽娟, 李春虎, 王亮. 氮缺陷石墨相氮化碳的制备及其光催化降解环境有机污染物性能[J]. 燃料化学学报(中英文), 2018, 46(7): 871-878.
引用本文: 张红光, 冯丽娟, 李春虎, 王亮. 氮缺陷石墨相氮化碳的制备及其光催化降解环境有机污染物性能[J]. 燃料化学学报(中英文), 2018, 46(7): 871-878.
ZHANG Hong-guang, FENG Li-juan, LI Chun-hu, WANG Liang. Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 871-878.
Citation: ZHANG Hong-guang, FENG Li-juan, LI Chun-hu, WANG Liang. Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light[J]. Journal of Fuel Chemistry and Technology, 2018, 46(7): 871-878.

氮缺陷石墨相氮化碳的制备及其光催化降解环境有机污染物性能

基金项目: 

the State Key Laboratory of Heavy Oil Processing MCTL contribution NO.137

详细信息
  • 中图分类号: TQ426.9

Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light

Funds: 

the State Key Laboratory of Heavy Oil Processing MCTL contribution NO.137

More Information
  • 摘要: 通过在三聚氰胺热分解过程中加入NaHCO3制备出具有氮缺陷的石墨相氮化碳(g-C3N4),利用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、N2吸附-脱附、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-vis DRS)和固体荧光光谱(PL)等方法对其进行表征,并在可见光(λ > 420nm)照射下,以水相中罗丹明B(RhB)的降解为模型反应,研究了该氮缺陷g-C3N4对有机污染物降解的光催化活性。结果表明,引入氮缺陷可以提高g-C3N4对可见光的吸收以及电子-空穴对的分离效率,进而提高g-C3N4的可见光催化活性。催化剂CNK0.005、CNK0.01和CNK0.05在30min内对RhB的降解率分别为79.8%、100.0%和87.6%;而在相同条件下,没有氮缺陷的g-C3N4对RhB的降解率仅为59.8%。
    本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http://www.sciencedirect.com/science/journal/18725813).
  • Figure  1  Schematic procedures for the synthesis of g-C3N4 materials with nitrogen defects

    Figure  2  XRD patterns of various g-C3N4 samples

    Figure  3  FT-IR spectra of various g-C3N4 samples

    Figure  4  C 1s (a) and N 1s (b) XPS spectra of CNK0.01 and pristine g-C3N4

    Figure  5  Nitrogen adsorption-desorption isotherms and BJH pore size distribution of CNK0.01 and pristine g-C3N4

    Figure  6  (a) UV-vis diffusive reflectance spectra of various g-C3N4 samples; (b) energy gap calculated by plotting (αhv)1/2 versus photon energy (Eg)

    Figure  7  Band structure alignments for the various g-C3N4 samples

    Figure  8  Photoluminescence spectra of various g-C3N4 samples

    Figure  9  Photocatalytic activity of various g-C3N4 samples in the degradation of RhB

    Figure  10  Kinetic curves for the RhB degradation over v arious g-C3N4 catalysts (linear correlation of ln(C/C0)vs.t)

    Figure  11  Repetitive tests of the photocatalytic degradation of RhB over CNK0.01

    Figure  12  Degradation of RhB over CNK0.01 in the presence of different radical scavengers

    Figure  13  Proposed mechanism for the photodegradation of RhB over CNK0.01

    Table  1  First-order reaction kinetic parameters of various g-C3N4 samples

    Sample Pristine g-C3N4 CNK0.005 CNK0.01 CNK0.05
    k/min-1 0.029 0.055 0.145 0.076
    R2 0.994 0.994 0.967 0.982
    下载: 导出CSV
  • [1] LU J, WANG Y, HUANG J, CAO L Y, LI J Y, HAI G J, BAI Z. One-step synthesis of g-C3N4, hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity[J]. Mater Sci Eng B, 2016, 214:19-25. doi: 10.1016/j.mseb.2016.08.003
    [2] LIU Y, ZHANG H, LU Y F, WU J, XIN B F. A simple method to prepare g-C3N4/Ag-polypyrrole composites with enhanced visible-light photocatalytic activity[J]. Catal Commun, 2016, 87(5):41-44. http://www.sciencedirect.com/science/article/pii/S1566736716303120
    [3] IQBALA W, WANG L Z, TAN X J, ZHANG J L. One-step in situ green template mediated porous graphitic carbon nitride for efficient visible light photocatalytic activity[J]. J Environ Chem Eng, 2017, 5(4):3500-3507. doi: 10.1016/j.jece.2017.07.011
    [4] HAO R R, WANG G H, TANG H, SUN L L, XU C, HAN D Y. Template-free preparation of macro/mesoporous g-C3N4/TiO2, heterojunction photocatalysts with enhanced visible light photocatalytic activity[J]. Appl Catal B:Environ, 2016, 187(15):47-58. http://www.sciencedirect.com/science/article/pii/S0926337316300273
    [5] SHI X W, Fujitsuka M, LOU Z Z, ZHANG P, Majima T. In situ nitrogen-doped hollow-TiO2/g-C3N4 composite photocatalyst with efficient charge separation boosting water reduction under visible light[J]. J Mater Chem, A, 2017, 5(20):9671-9681. doi: 10.1039/C7TA01888F
    [6] CHEN X, CHEN H L, GUAN J, ZHEN J M, SUN Z J, DU P W, LU Y L, YANG S F. A facile mechanochemical route to a covalently bonded graphitic carbon nitride (g-C3N4) and fullerene hybrid toward enhanced visible light photocatalytic hydrogen production[J]. Nanoscale, 2017, 9(17):5615-5623. doi: 10.1039/C7NR01237C
    [7] HE Y M, CAI J, LI T T, WU Y, LIN H J, ZHAO L H, LUO M F. Efficient degradation of RhB over GdVO4/g-C3N4, composites under visible-light irradiation[J]. Chem Eng J, 2013, 215/216:721-730. doi: 10.1016/j.cej.2012.11.074
    [8] LI K, XIE X, ZHANG W D. Photocatalysts based on g-C3N4-encapsulating carbon spheres with high visible light activity for photocatalytic hydrogen evolution[J]. Carbon, 2016, 110:356-366. doi: 10.1016/j.carbon.2016.09.039
    [9] LU D Z, WANG H M, ZHAO X N, Kondamareddy K K, DING J Q, LI C H, FANG P F. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen[J]. Acs Sustainable Chem Eng, 2017, 5(11):1436-1445. http://www.researchgate.net/publication/312426080_Highly_Efficient_Visible-Light-Induced_Photoactivity_of_Z-Scheme_g-C_3_N_4_AgMoS_2_Ternary_Photocatalysts_for_Organic_Pollutant_Degradation_and_Production_of_Hydrogen
    [10] LI J Q, YUAN H, ZHU Z F. Photoelectrochemical performance of g-C3N4/Au/BiPO4 Z-scheme composites to improve the mineralization property under solar light[J]. Rsc Adv, 2016, 6(74):70563-70572. doi: 10.1039/C6RA13570F
    [11] YU X, SHI J J, FENG L J, LI C H, WANG L. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Appl Surf Sci, 2017, 396:1775-1782. doi: 10.1016/j.apsusc.2016.11.219
    [12] LIANG S J, XIA Y Z, ZHU S Y, ZHENG S, HE Y H, BI J H, LIU M H, WU L. Au and Pt co-loaded g-C3N4, nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation[J]. Appl Surf Sci, 2015, 358:304-312. doi: 10.1016/j.apsusc.2015.08.035
    [13] TIAN Y M, GE L, WANG K Y, CHAI Y S. Synthesis of novel MoS2/g-C3N4, heterojunction photocatalysts with enhanced hydrogen evolution activity[J]. Mater Charact, 2014, 87:70-73. doi: 10.1016/j.matchar.2013.10.020
    [14] WENG S X, HU J, LU M L, YE X X, PEI Z X, HUANG M L, XIE L Y, LIN S, LIU P. In situ photogenerated defects on surface-complex BiOCl (010) with high visible-light photocatalytic activity:A probe to disclose the charge transfer in BiOCl (010)/surface-complex system[J]. Appl Catal B:Environ, 2015, 163:205-213. doi: 10.1016/j.apcatb.2014.07.051
    [15] HONG Z H, SHEN B, CHEN Y L, LIN B Z, GAO B F. Enhancement of photocatalytic H2 evolution over nitrogen-deficient graphitic carbon nitride[J]. J Mater Chem A, 2013, 1(38):11754-11761. doi: 10.1039/c3ta12332d
    [16] NIU P, YIN L C, YANG Y Q, LIU G, CHENG H M. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies[J]. Adv Mater, 2014, 26(47):8046-8052. doi: 10.1002/adma.v26.47
    [17] YU H J, SHI R, ZHAO Y X, BIAN T, ZHAO Y F, ZHOU C, WATERHOUSE G I N, WU L Z, TUNG C H, ZHANG T R[J]. Potocatalysis:Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible light-driven hydrogen evolution[J]. Adv Mater, 2017, 29(16):5148-5154. http://europepmc.org/abstract/MED/28185339
    [18] WU M, YAN J M, ZHANG X W, ZHAO M. Synthesis of g-C3N4with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution[J]. Appl Surf Sci, 2015, 354(2):196-200. http://www.sciencedirect.com/science/article/pii/S0169433215001579
    [19] SHANG Y Y, MA Y J, CHEN X, XIONG X, PAN J. Effect of sodium doping on the structure and enhanced photocatalytic hydrogen evolution performance of graphitic carbon nitride[J]. Mol Catal, 2017, 433:128-135. doi: 10.1016/j.mcat.2016.12.021
    [20] CHIDHAMBARAM N, RAVICHANDRAN K. Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications[J]. Mater Lett, 2017, 207:44-48. doi: 10.1016/j.matlet.2017.07.040
    [21] CHEN H, YAO J H, QIU P X, XU C M, JIANG F, WANG X. Facile surfactant assistant synthesis of porous oxygen-doped graphitic carbon nitride nanosheets with enhanced visible light photocatalytic activity[J]. Mater Res Bull, 2017, 91:42-48. doi: 10.1016/j.materresbull.2017.02.042
    [22] ZHENG Y, ZHANG Z S, LI C H, PROULX S. Surface hydroxylation of graphitic carbon nitride:Enhanced visible light photocatalytic activity[J]. Mater Res Bull, 2016, 84:46-56. doi: 10.1016/j.materresbull.2016.07.003
    [23] WANG X J, TIAN X, LI F T, LI Y P, ZHAO J, HAO Y J, LIU Y. Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency[J]. Int J Hydrogen Energy, 2016, 41(6):3888-3895. doi: 10.1016/j.ijhydene.2016.01.004
    [24] ZHENG Y, ZHANG Z S, LI C H. Beta-FeOOH-supported graphitic carbon nitride as an efficient visible light photocatalyst[J]. J Mol Catal A:Chem, 2016, 423:463-471. doi: 10.1016/j.molcata.2016.07.032
    [25] MAO M M, CHEN F, ZHENG C C, NING J Q, ZHONG Y J, HU Y. Facile synthesis of porous Bi2O3-BiVO4 p-n heterojunction composite microrods with highly efficient photocatalytic degradation of phenol[J]. J Alloys Compd, 2016, 688:1080-1087. doi: 10.1016/j.jallcom.2016.07.128
    [26] MA X J, LI X R, LI M M, MA X C, YU L, DAI Y. Effect of the structure distortion on the high photocatalytic performance of C60/g-C3N4 composite[J]. Appl Surf Sci, 2017, 414:124-130. doi: 10.1016/j.apsusc.2017.04.019
    [27] SUN Y J, ZHANG W D, XIONG T, ZHAO Z W, DONG F, WANG R Q, HO W K. Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal[J]. J Colloid Interface Sci, 2014, 418:317-323. doi: 10.1016/j.jcis.2013.12.037
    [28] LI H, ZHANG T X, PAN C, PU C C, HU Y, HU X Y, LIU E Z, FAN J. Self-assembled Bi2MoO6/TiO2 nanofiber heterojunction film with enhanced photocatalytic activities[J]. Appl Surf Sci, 2017, 391:303-310. doi: 10.1016/j.apsusc.2016.06.167
    [29] HOFFMANN M R, MARTIN S T, CHOI W Y, BAHNEMANN D W. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1):69-96. doi: 10.1021/cr00033a004
    [30] DING J, XU W, WAN H, YUAN D S, CHEN C, WANG L, GUAN G F, DAI W L. Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes[J]. Appl Catal B:Environ, 2018, 221:626-634. doi: 10.1016/j.apcatb.2017.09.048
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  153
  • HTML全文浏览量:  46
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 修回日期:  2018-06-12
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-07-10

目录

    /

    返回文章
    返回