留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiMo/Al2O3-USY催化剂上中低温煤焦油加氢裂化性能研究

杨加可 左童久 鲁玉莹 曾武松 陆江银

杨加可, 左童久, 鲁玉莹, 曾武松, 陆江银. NiMo/Al2O3-USY催化剂上中低温煤焦油加氢裂化性能研究[J]. 燃料化学学报(中英文), 2019, 47(9): 1053-1066.
引用本文: 杨加可, 左童久, 鲁玉莹, 曾武松, 陆江银. NiMo/Al2O3-USY催化剂上中低温煤焦油加氢裂化性能研究[J]. 燃料化学学报(中英文), 2019, 47(9): 1053-1066.
YANG Jia-ke, ZUO Tong-jiu, LU Yu-ying, ZENG Wu-song, LU Jiang-yin. Catalytic performance of NiMo/Al2O3-USY in the hydrocracking of low-temperature coal tar[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1053-1066.
Citation: YANG Jia-ke, ZUO Tong-jiu, LU Yu-ying, ZENG Wu-song, LU Jiang-yin. Catalytic performance of NiMo/Al2O3-USY in the hydrocracking of low-temperature coal tar[J]. Journal of Fuel Chemistry and Technology, 2019, 47(9): 1053-1066.

NiMo/Al2O3-USY催化剂上中低温煤焦油加氢裂化性能研究

基金项目: 

国家自然科学基金 21366030

详细信息
  • 中图分类号: TQ032

Catalytic performance of NiMo/Al2O3-USY in the hydrocracking of low-temperature coal tar

Funds: 

the National Natural Science Foundation of China 21366030

More Information
  • 摘要: 采用等体积浸渍法制得一系列NiMo/Al2O3-USY催化剂,在200 mL固定床上考察了不同金属负载量对其中低煤焦油加氢裂化催化性能的影响,进一步用NH4F溶液改性USY以提高催化剂的脱硫性能,并结合XRD、氮气吸附-脱附、XPS、HR-TEM、H2-TPR和NH3-TPD等手段对催化剂进行了表征分析。结果表明,NiMo/Al2O3-USY催化剂适宜的MoO3负载量为15%(质量分数);当MoO3含量超过15%后,MoS2活性相在载体上团聚,硫化程度趋于稳定,强酸酸量和孔径减少,增加金属负载量对煤焦油加氢裂化转化率影响较小。NH4F改性USY可增大NiMo/Al2O3-USY催化剂的孔径,有利于提高煤焦油加氢裂化转化率。表面强酸酸量减少后,产品中的硫含量明显增加,说明强酸酸量是影响产物硫含量的关键因素。当NH4F浓度为0.6 mol/L时,NH4F改性USY制得的NM0.6催化剂上煤焦油加氢裂化的转化率为87.65%,产品汽油馏分(≤ 180 ℃)硫含量为5.96 mg/kg,柴油馏分(180-320 ℃)硫含量为34.98 mg/kg。
  • 图  1  浸渍制备催化剂流程示意图

    Figure  1  Process of catalysts production

    图  2  Process of catalysts production

    Figure  2  Simplified schematic diagram of hydrocracking process

    图  3  不同金属含量催化剂的XRD谱图

    Figure  3  XRD patterns of various NiMo/USY-Al2O3 catalysts with different MoO3 contents

    图  4  不同金属含量催化剂的N2吸附-脱附曲线(a)和相应孔径分布(b)

    Figure  4  Nitrogen adsorption and desorption isotherms (a) and pore size distribution curves (b) of various NiMo/USY-Al2O3 catalysts with different MoO3 contents

    图  5  不同金属含量催化剂的NH3-TPD谱图

    Figure  5  NH3-TPD profiles of various NiMo/USY-Al2O3 catalysts with different MoO3 contents

    图  6  还原后的不同金属含量催化剂的Mo 3d谱图

    Figure  6  XPS spectra of various NiMo/USY-Al2O3 catalysts after sulfidation

    (a): NiMo-9; (b): NiMo-12; (c): NiMo-15; (d): NiMo-18; (e): NiMo-21

    图  7  不同金属含量催化剂的HR-TEM照片

    Figure  7  HR-TEM analysis of various NiMo/USY-Al2O3 catalysts after sulfidation

    图  8  催化剂的MoS2片层长度和层数的分布图

    Figure  8  MoS2 length (a) and stack layer (b) distribution of various NiMo/USY-Al2O3 catalysts after sulfidation

    图  9  不同金属含量催化剂的煤焦油加氢产物分布

    Figure  9  Performances of NiMo/USY-Al2O3 catalysts with different MoO3 contents in LTCT hydrocracking

    (a): product distribution and residue conversion (Rc); (b): Gaseous product distribution reaction condition: t=395℃, p=8MPa, WHSV = 0.6h-1, H2/oil = 800

    图  10  不同金属负载量催化剂煤焦油加氢后产物的硫含量

    Figure  10  Sulfur contents in the products for LTCT hydrocracking over NiMo/USY-Al2O3 catalysts with different MoO3 contents

    reaction condition: t=395℃, p=8MPa, WHSV=0.6h-1, H2/oil=800

    图  11  不同NMy催化剂的N2吸附-脱附曲线(a)和相应孔径分布(b)

    Figure  11  Nitrogen adsorption and desorption isotherms of NMy catalysts (a) and their pore size distribution (b)

    图  12  不同NMy催化剂的XRD谱图

    Figure  12  XRD patterns of the NMy catalysts

    图  13  不同NMy催化剂的NH3-TPD谱图

    Figure  13  NH3-TPD profiles of the NMy catalysts

    图  14  不同NMy催化剂的H2-TPR谱图

    Figure  14  H2-TPR profiles of the NMy catalysts

    图  15  不同NMy催化剂的煤焦油加氢性能对比

    Figure  15  Product distribution and residue conversion (Rc) (a) and sulfur content (b) for LTCT hydrocracking over various NMy catalysts

    reaction conditiona: t=395℃, p=8MPa, WHSV = 0.6h-1, H2/oil = 800

    表  1  原材料的基本性质

    Table  1  Properties of the LTCT feedstock

    Item Value
    Density ρ/(g·cm-3) 0.9548
    Elemental analysis w/%
    C 84.97
    H 11.53
    S 0.15
    Distillation range t/℃
    IBP/10% 199/265
    30%/50% 293/351
    90%/FBP 467/504
    下载: 导出CSV

    表  2  不同金属含量催化剂的织构参数

    Table  2  Textural properties of NiMo/USY-Al2O3 catalysts with different MoO3 contents

    Catalyst ABET /(m2·g-1) Pore volume v/(cm3·g-1) Pore diameter d/nm
    vtotal vmicro vmacro
    CAY 359 0.30 0.007 0.297 4.41
    NiMo-9 346 0.32 0.021 0.307 3.80
    NiMo-12 280 0.20 0.005 0.195 4.30
    NiMo-15 257 0.19 0.005 0.188 4.25
    NiMo-18 230 0.21 0.009 0.205 3.98
    NiMo-21 191 0.18 0.006 0.1756 3.98
    下载: 导出CSV

    表  3  不同金属含量催化剂的酸性分布

    Table  3  Acid site distribution of NiMo/USY-Al2O3 catalysts with different MoO3 contents

    Catalyst 20-200℃ 200-350℃ 350-600℃ Overall relative value
    area (a.u.) relative area (a.u.) relative area (a.u.) relative
    CAY70 26.71 1 44.32 1 28.97 1 1
    NiMo-9 31.06 1.43 46.79 1.3 22.15 0.94 1.23
    NiMo-12 28.85 1.49 45.82 1.42 25.32 1.2 1.38
    NiMo-15 27.89 1.35 45.63 1.33 26.48 1.18 1.3
    NiMo-18 30.75 1.38 48.49 1.28 20.76 0.84 1.17
    NiMo-21 29.52 1.38 53.74 1.52 16.74 0.72 1.25
    下载: 导出CSV

    表  4  不同金属含量催化剂硫化后的价态分布

    Table  4  Valence distribution of various NiMo/USY-Al2O3 catalysts after sulfidation

    Catalyst Ratio of different Mo species /%
    Mo4+ Mo5+ Mo6+ total
    NiMo-9 57 19 24 100.00
    NiMo-12 65 17 18 100.00
    NiMo-15 78 15 7 100.00
    NiMo-18 82 14 5 100.00
    NiMo-21 86 11 3 100.00
    下载: 导出CSV

    表  5  不同金属含量催化剂的平均MoS2片层长度和层数

    Table  5  Average length and stack layer number of various NiMo/USY-Al2O3 catalysts after sulfidation

    Catalyst Average length of slabs d/nm Average stack layer number of slabs
    NiMo-9 3.63 3.56
    NiMo-12 3.06 2.2
    NiMo-15 3.88 3.01
    NiMo-18 3.59 2.63
    NiMo-21 3.94 2.92
    下载: 导出CSV

    表  6  不同NMy催化剂的织构参数

    Table  6  Textural properties of the NMy catalysts

    Catalyst Surface area
    A/(m2·g-1)
    Pore volume v/(cm3·g-1) Average pore diameter d/nm
    vtotal vmicro vmacro
    NiMo-15 257 0.19 0.005 0.188 4.14
    NiMo-15(0.3) 254 0.22 0.008 0.212 3.93
    NiMo-15(0.6) 248 0.22 0.006 0.216 4.36
    NiMo-15(0.9) 254 0.24 0.007 0.238 4.38
    NiMo-15(1.2) 268 0.22 0.004 0.2189 4.45
    NiMo-15(1.5) 253 0.25 0.010 0.239 4.40
    下载: 导出CSV

    表  7  不同NMy催化剂的酸性分布

    Table  7  Acid sites distribution of the NMy catalysts

    Catalyst 20-200℃ 200-350℃ 350-600℃ Overall relative value
    area (a.u.) relative area (a.u.) relative area (a.u.) relative
    NiMo-15 926.7 1 1039 1 582.4 1 1
    NM0.3 1001 1.08 933 0.9 388 0.67 0.91
    NM0.6 930.5 1 1071 1.03 305.8 0.53 0.91
    NM0.9 840 0.91 1108 1.07 248 0.43 0.86
    NM1.2 746.6 0.81 1068 1.03 218.6 0.38 0.8
    NM1.5 682.9 0.74 820.2 0.79 99.4 0.17 0.63
    下载: 导出CSV
  • [1] 闫伦靖.煤焦油气相催化裂解生成轻质芳烃的研究[D].太原: 太原理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10112-1016714272.htm

    YAN Lun-jing. Analysis on converting gaseous tar to light arenes by catalytic cracking[D]. Taiyuan: Taiyuan University of Technology, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10112-1016714272.htm
    [2] SUN J M, LI D, YAO R Q, SUN Z H, LI X K, LI W H. Modeling the hydrotreatment of full range medium temperature coal tar by using a lumping kinetic approach[J]. React Kinet Mech Catal, 2015, 114(2):451-471. doi: 10.1007/s11144-014-0791-2
    [3] 马宝岐.煤焦油制燃料油品[M].北京:化学工业出版社, 2011.

    MA Bao-qi. Preparation of Fuel Oil from Coal Tar[M]. Beijing:Chemical Industry Press, 2011.
    [4] CUI W G, ZHENG H A, NIU M L, ZHANG S J, LI D, QIAO J, LI W H. Product compositions from catalytic hydroprocessing of low temperature coal tar distillate over three commercial catalysts[J]. React Kinet Mech Catal, 2016, 119(2):491-509. doi: 10.1007/s11144-016-1068-8
    [5] 夏良燕.多联产中低温煤焦油加氢工艺及催化剂研究[D].杭州: 浙江大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10335-1015539673.htm

    XIA Liang-yan. Study on hydroprocessing technology and catalysts of LTCT from polygeneration[D]. Hangzhou: Zhejiang University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10335-1015539673.htm
    [6] FENG X, LI D, CHEN J H, NIU M L, LIU X, LESTER L T, LI W H. Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of whole fraction low-temperature coal tar[J]. Fuel, 2018, 230:113-125. doi: 10.1016/j.fuel.2018.05.023
    [7] 张世万.煤焦油催化加氢轻质化及催化剂的研究[D].上海: 华东理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10251-1012309953.htm

    ZHANG Shi-wan. Study on light-end products of coal tar with catalytic hydrogenation and catalyst[D]. Shanghai: East China University of Science and Technology, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10251-1012309953.htm
    [8] ZHANG H Y, CHEN G W, BAI L, CHANG N, WANG Y G. Selective hydrogenation of aromatics in coal-derived liquids over novel NiW and NiMo carbide catalysts[J]. Fuel, 2019, 244:359-365. doi: 10.1016/j.fuel.2019.02.015
    [9] VAN N B, DOROTHEE L, PAVEL A, CHRISTOPHE G. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part Ⅰ:Promoting effect of cobalt on HDO selectivity and activity[J]. Appl Catal B:Environ, 2011, 101(3/4):239-245.
    [10] ZHANG D Q, DUAN A J, ZHAO Z, WANG X Q, JIANG G Y, LIU J, WANG C Y. Synthesis, characterization and catalytic performance of meso-microporous material Beta-SBA-15-supported NiMo catalysts for hydrodesulfurization of dibenzothiophene[J]. Catal Today, 2011, 175(1):477-484. doi: 10.1016/j.cattod.2011.03.060
    [11] 许楠, 梁乃森, 张舜光, 段艳, 侯凯湖.β-MCM-41的制备及在汽油异构/脱硫中的应用[J].石油学报(石油加工), 2012, 28(6):913-919. doi: 10.3969/j.issn.1001-8719.2012.06.005

    XU Nan, LIANG Nai-sen, ZHANG Shun-guang, DUAN Yan, HOU Kai-hu. Synthesis of β-MCM-41 and its application in gasoline isomerization/hydrodesulfurization[J]. Acta Pet Sin(Pet Process Sect), 2012, 28(6):913-919. doi: 10.3969/j.issn.1001-8719.2012.06.005
    [12] MENG J P, WANG Z Y, MA Y H, LU J Y. Hydrocracking of low-temperature coal tar over NiMo/Beta-KIT-6 catalyst to produce gasoline oil[J]. Fuel Process Technol, 2017, 165:62-71. doi: 10.1016/j.fuproc.2017.05.009
    [13] KAZAKOV M O, NADEINA K A, DANILOVA I G, DIK P P, KLIMOV O V, PEREYMA V Y, PAUKSHTIS E A, GOLUBEV I S, PROSVIRIN I P, GERASIMOV E Y, DOBRYAKOVA I V, KNYAZEVA E E, IVANOVA I I, NOSKOV A S. Influence of USY zeolite recrystallization on physicochemical properties and catalytic performance of NiMo/USY-Al2O3 hydrocracking catalysts[J]. Catal Today, 2019, 329:108-115. doi: 10.1016/j.cattod.2019.01.003
    [14] RAYO P, TORRES M P, CENTENTO G, FERNANDO A, JOSE A D, ANCHEYTA J. Effect of silicon incorporation method in the supports of NiMo catalysts for hydrotreating reactions[J]. Fuel, 2019, 239:1293-1303. doi: 10.1016/j.fuel.2018.10.102
    [15] FERRAZ S, ZOTIN F, ARAUJO L. Influence of support acidity of NiMoS catalysts in the activity for hydrogenation and hydrocracking of tetralin[J]. Appl Catal A:Gen, 2010, 384(1):51-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66b6232b9d2820ec4fff73894a76e421
    [16] 陈松, 许杰, 阳永荣, 王靖岱, 张晓萍, 张奎喜.以介孔分子筛为硅源合成的超微β沸石特性及其加氢裂化性能[J].催化学报, 2006, 27(3):255-258. doi: 10.3321/j.issn:0253-9837.2006.03.013

    CHEN Song, XU Jie, YANG Yong-rong, WANG Jing-dai, ZHANG Xiao-ping, ZHANG Kui-xi. Nanometer β zeolite made from mesoporous zeolite and its hydrocracking performance[J]. Chin J Catal, 2006, 27(3):255-258. doi: 10.3321/j.issn:0253-9837.2006.03.013
    [17] 张学军, 王宗贤, 郭爱军, 袁宗胜, 王甫村.高中油型加氢裂化催化剂用Y型沸石的改性研究[J].燃料化学学报, 2008, 36(5):606-609. doi: 10.3969/j.issn.0253-2409.2008.05.017

    ZHANG Xue-jun, WANG Zong-xian, GUO Ai-jun, YUAN Zong-sheng, WANG Fu-cun. Modification of zeolite Y for preparation of the maxinizing middle distillates hydrocracking catalyst[J]. J Fuel Chem Technol, 2008, 36(5):606-609. doi: 10.3969/j.issn.0253-2409.2008.05.017
    [18] SHALI N B, SUGUNAN S. Influence of transition metals on the surface acidic properties of titania prepared by sol-gel route[J]. Mater Res Bull, 2007, 42(9):1777-1783. doi: 10.1016/j.materresbull.2006.11.016
    [19] RAJAGOPAL S, MARZARI J A, MIRANDA R. Silica-alumina-supported Mo oxide catalysts:Genesis and demise of Brønsted-Lewis acidity[J]. J Catal, 1995, 151(1):192-203. doi: 10.1006/jcat.1995.1021
    [20] JOSE E, MARIA C B, ANA W G, MARIA A. CORTES J, CARLOS A C, JOSE A T. Highly active P-doped sulfided NiMo/alumina HDS catalysts from Mo-blue by using saccharose as reducing agents precursor[J]. Appl Catal B:Environ, 2018, 237:708-720. doi: 10.1016/j.apcatb.2018.06.034
    [21] KLIMOV O V, NADEINA K A, DIK P P, KORYAKINA G I, PEREYMA V Y, KAZAKOV M O, BUDUKVA S V, GERASIMOV E Y, PROSVIRIN I P, KOCHUBEY D I, NOSKOV A S. CoNiMo/Al2O3 catalysts for deep hydrotreatment of vacuum gasoil[J]. Catal Today, 2016, 271:56-63. doi: 10.1016/j.cattod.2015.11.004
    [22] 孟欣欣, 邱泽刚, 郭兴梅, 李振荣, 胡乃方, 宋毛宁, 赵亮富.不同金属含量Ni-W催化剂的煤焦油加氢脱硫脱氮性能研究[J].燃料化学学报, 2016, 44(5):570-578. doi: 10.3969/j.issn.0253-2409.2016.05.009

    MENG Xin-xin, QIU Ze-gang, GUO Xing-mei, LI Zhen-rong, HU Nai-fang, SONG Mao-ning, ZHAO Liang-fu. Hydrodenitrogenation and hydrodesulfurization of coal tar on Ni-W catalysts with different metal loadings[J]. J Fuel Chem Technol, 2016, 44(5):570-578. doi: 10.3969/j.issn.0253-2409.2016.05.009
    [23] BERIT H, N R J K, HENRSK T E. A density functional study of the chemical differences between Type Ⅰ and Type Ⅱ MoS2-based structures in hydrotreating catalysts[J]. J Phys Chem B, 2005, 109(6):2245-2253. doi: 10.1021/jp048842y
    [24] YIN H L, ZHOU T N, LLU Y Q, CHAI Y M, LIU C G. NiMo/Al2O3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel[J]. J Nat Gas Chem, 2011, 20(4):441-448. doi: 10.1016/S1003-9953(10)60204-6
    [25] YU F, HAN X, GANG S, LIU H Y, QIAN Y, WANG T H, GONG G B, BAO X J. Citrc acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts[J]. J Catal, 2011, 279(5):27-35.
    [26] 方向晨.加氢裂化[M].北京:中国石化出版社, 2008.

    FANG Xiang-chen. Hydrocracking[M]. Beijing:China Petrochemical Press, 2008.
    [27] 张登前.介微孔材料的合成及其在柴油HDS催化剂中的应用研究[D].北京: 中国石油大学, 2010. http://d.wanfangdata.com.cn/Thesis/Y2169840

    ZHANG Deng-qian. Synthesis of meso-microporous composite materials and their applications in the catalysts for the hydrodesulfurization of diesel[D]. Beijing: China University of Petroleum, 2010. http://d.wanfangdata.com.cn/Thesis/Y2169840
    [28] 任亮, 毛以朝, 刘坤红, 聂红.正癸烷在不同酸性Y型分子筛催化剂上的加氢裂化反应[J].石油学报(石油加工), 2009, 25(1):31-35. doi: 10.3969/j.issn.1001-8719.2009.01.006

    REN Liang, MAO Yi-chao, LIU Kun-hong, NIE Hong. Hydrocracking of decane on different acidity Y zeolite catalysts[J]. Acta Pet Sin(Pet Process Sect), 2009, 25(1):31-35. doi: 10.3969/j.issn.1001-8719.2009.01.006
    [29] AROLDY P, JONGE J C M D, MOULIJNN J A. Temperature-programed reduction of molybdenum(Ⅵ) oxide and molybdenum(Ⅳ) oxide[J]. J Phys Chem, 1985, 89(21):4517-4526. doi: 10.1021/j100267a021
    [30] HENKER M, WENDLANDT K P, VALYON J, BORNMANN P. Structure of MoO3/Al2O3-SiO2 catalysts[J]. Appl Catal, 1991, 69(1):205-220. doi: 10.1016/S0166-9834(00)83303-5
    [31] SHEILA G A, FATIMA M, LUCIA R, RADDI A, JOSE L Z. Influence of support acidity of NiMoS catalysts in the activity for hydrogenation and hydrocracking of tetralin[J]. Appl Catal A:Gen, 2010, 384(1/2):51-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66b6232b9d2820ec4fff73894a76e421
  • 加载中
图(16) / 表(7)
计量
  • 文章访问数:  423
  • HTML全文浏览量:  86
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-28
  • 修回日期:  2019-07-04
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回