留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MnαTi1-α催化剂NH3选择性催化还原NO的中低温活性及机理研究

李燕 黄军 林法伟 邵嘉铭 王智化 向柏祥

李燕, 黄军, 林法伟, 邵嘉铭, 王智化, 向柏祥. MnαTi1-α催化剂NH3选择性催化还原NO的中低温活性及机理研究[J]. 燃料化学学报(中英文), 2020, 48(1): 91-99.
引用本文: 李燕, 黄军, 林法伟, 邵嘉铭, 王智化, 向柏祥. MnαTi1-α催化剂NH3选择性催化还原NO的中低温活性及机理研究[J]. 燃料化学学报(中英文), 2020, 48(1): 91-99.
LI Yan, HUANG Jun, LIN Fa-wei, SHAO Jia-ming, WANG Zhi-hua, XIANG Bai-xiang. Study on the activity and mechanism of selective catalytic reduction of NO with NH3 over MnαTi1-α catalyst at medium-low temperatures[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 91-99.
Citation: LI Yan, HUANG Jun, LIN Fa-wei, SHAO Jia-ming, WANG Zhi-hua, XIANG Bai-xiang. Study on the activity and mechanism of selective catalytic reduction of NO with NH3 over MnαTi1-α catalyst at medium-low temperatures[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 91-99.

MnαTi1-α催化剂NH3选择性催化还原NO的中低温活性及机理研究

基金项目: 

国家重点研发计划 2018YFB0604203

详细信息
  • 中图分类号: TK227

Study on the activity and mechanism of selective catalytic reduction of NO with NH3 over MnαTi1-α catalyst at medium-low temperatures

Funds: 

the National Basic Research Program of China 2018YFB0604203

More Information
  • 摘要: 采用浸渍法制备了不同MnOx负载量的SCR催化剂,检测其在中低温下的脱硝活性和抗SO2中毒性能,并分析影响MnαTi1-α催化剂中低温活性的机理。采用BET、XRD、XPS、NH3-TPD和H2-TPR对催化剂表征。研究表明,随着MnOx负载量的增加,MnαTi1-α催化剂最高脱硝活性温度区间向低温区移动,Mn0.1Ti0.9催化剂在200-385 ℃脱硝效率达80%以上。SO2会造成MnαTi1-α催化剂脱硝活性显著下降,且不可逆。当MnOx负载量增加时,催化剂比表面积先增大后略微减小、H2-TPR中Mn4+峰面积增大、表面化学吸附氧增加,有利于NH3-SCR反应在低温下的进行。MnαTi1-α催化剂的酸性位点随MnOx含量增加而增多,H2还原峰出现温度较低,表明MnαTi1-α催化剂具有良好的中低温氧化还原性。
  • 图  1  MnαTi1-α催化剂脱硝活性及N2选择性评价系统示意图

    Figure  1  Experimental setup for denitration activity test and N2 selectivity evaluation of the MnαTi1-α catalysts

    图  2  MnOx负载量对MnαTi1-α催化剂脱硝活性的影响

    Figure  2  Influence of MnOx loading on the denitration activity of the MnαTi1-α catalysts

    (NO=500 μL/L, NH3=500 μL/L, O2=3%, balance N2, GHSV=3.6×104 h-1)

    图  3  MnOx负载量对MnαTi1-α催化剂N2选择性的影响

    Figure  3  Influence of MnOx loading on N2 selectivity of the MnαTi1-α catalysts

    (NO=500 μL/L, NH3=500 μL/L, O2=3%, balance N2, GHSV=3.6×104 h-1)

    图  4  烟气中SO2对MnαTi1-α催化剂脱硝活性的影响

    Figure  4  Influence of SO2 on denitration activity of the MnαTi1-α catalysts

    (NO=500 μL/L, NH3=500 μL/L, SO2=300 μL/L, O2=3%, balance N2, GHSV=3.6×104 h-1)

    图  5  MnαTi1-α催化剂氮吸附-脱附曲线和孔径分布

    Figure  5  N2 absorption-desorption isotherms and pore size distribution curves of the MnαTi1-α catalysts

    (a): Mn0.1Ti0.9; (b): Mn0.07Ti0.93; (c): Mn0.05Ti0.95; (d): Mn0.03Ti0.97; (e): Mn0.01Ti0.99; (f): Mn0.005Ti0.995

    图  6  MnαTi1-α催化剂的XRD谱图

    Figure  6  XRD patterns of the MnαTi1-α catalysts

    图  7  MnαTi1-α催化剂Mn 2p XPS谱图

    Figure  7  Mn 2p XPS spectra of the MnαTi1-α catalysts

    图  8  MnαTi1-α催化剂O 1s XPS谱图

    Figure  8  O 1s XPS spectra of the MnαTi1-α catalysts

    图  9  MnαTi1-α催化剂NH3-TPD分峰曲线

    Figure  9  NH3-TPD profiles of the MnαTi1-α catalysts

    图  10  MnαTi1-α催化剂H2-TPR谱图

    Figure  10  H2-TPR profiles of the MnαTi1-α catalysts

    表  1  MnαTi1-α催化剂孔隙结构特征参数

    Table  1  Pore structure parameters of the MnαTi1-α catalyst

    CatalystSpecific surface area A/(m2·g-1)Pore volume v/(cm3·g-1)Average pore diameter d/nm
    Mn0.1Ti0.955.40.448233.6
    Mn0.07Ti0.9357.00.497534.9
    Mn0.05Ti0.9551.50.464835.5
    Mn0.03Ti0.9750.90.402331.6
    Mn0.01Ti0.9952.50.393430.0
    Mn0.005Ti0.99549.80.353328.4
    下载: 导出CSV

    表  2  MnαTi1-α催化剂的表面元素含量

    Table  2  Surface element contents of the MnαTi1-α catalysts

    CatalystContent w/%
    Mn3+Mn4+OαOβ
    Mn0.1Ti0.931.268.835.065.0
    Mn0.05Ti0.9535.664.429.470.6
    Mn0.01Ti0.9940.859.228.271.8
    下载: 导出CSV

    表  3  MnαTi1-α催化剂NH3-TPD分峰数据

    Table  3  NH3-TPD peak parameters of the MnαTi1-α catalysts

    CatalystPeak position t/℃
    peak1peak2peak3peak4peak5peak6
    Mn0.1Ti0.9224.13285.46351.64448.91553.32-
    Mn0.05Ti0.95192.05244.62296.31346.37425.92495.47
    Mn0.01Ti0.99196.43244.04305.02362.75443.37-
    peak area
    peak1peak2peak3peak4peak5peak6
    Mn0.1Ti0.9259.43143.73245.12366.8813.58-
    Mn0.05Ti0.95131.73289.4284.86244.68242.4241.88
    Mn0.01Ti0.9986.67156.50158.38106.03124.68-
    下载: 导出CSV
  • [1] YANG Z Q, LI H L, LIU X, LI P, YANG J P, LEE P H, SHIH K. Promotional effect of CuO loading on the catalytic activity and SO2 resistance of MnOx/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation[J]. Fuel, 227: 79-88. doi: 10.1016/j.fuel.2018.04.074
    [2] QIU K Z, SONG J, SONG H, GAO X, LUO Z Y, CEN K F. A novel method of microwave heating mixed liquid-assisted regeneration of V2O5-WO3/TiO2 commercial SCR catalysts[J]. Environ Geochem Health, 2015, 37(5): 905-914. doi: 10.1007/s10653-014-9663-y
    [3] 马子然, 林德海, 马少丹, 马静, 孙琦, 李永龙, 徐文强, 王宝冬. 600 MW机组脱硝催化剂失活机理及中试再生[J].环境工程学报, 2018, 12(6): 1702-1712. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201806015

    MA Zi-ran, LIN De-hai, MA Shao-dan, MA Jing, SUN Qi, LI Yong-long, XU Wen-qiang, WANG Bao-dong. Deactivation mechanism and regeneration of SCR catalyst used in 600MW unit of coal fired power plant[J]. Chin J Environ Eng, 2018, 12(6): 1702-1712. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201806015
    [4] 李燕, 刘毅, 王鹏, 韩涛, 余学海, 赵瑞, 廖海燕. Zn-W/TiO2宽温度窗口SCR催化剂在燃煤烟气中的应用[J].环境工程, 2018, 36(11): 89-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201811018

    LI Yan, LIU Yi, WANG Peng, HAN Tao, YU Xue-hai, ZHAO Rui, LIAO Hai-yan. Application research on Zn-W/TiO2 SCR catalyst with wide operation temperature window to the coal-fired flue gas[J]. Environ Energy, 2018, 36(11): 89-93. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201811018
    [5] YANG Y R, WANG M H, TAO Z L, LIU Q, FEI Z Y, CHEN X, ZHANG Z X, TANG J H, CUI M F, QIAO X. Mesoporous Mn-Ti amorphous oxides: A robust low-temperature NH3-SCR catalyst[J]. Catal Sci Technol, 2018, 8(24): 6396-6406. doi: 10.1039/C8CY01313F
    [6] 闫东杰, 李亚静, 玉亚, 黄学敏, 周卫可, 刘颖慧.碱金属沉积对Mn-Ce/TiO2低温SCR催化剂性能影响[J].燃料化学学报, 2018, 46(12): 1513-1519. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract29318.shtml

    YAN Dong-jie, LI Ya-jing, YU Ya, HUANG Xue-min, ZHOU Wei-ke, LIU Ying-hui. Effect of alkali metal deposition on Mn-Ce/TiO2 catalyst for NO reduction by NH3 at low temperature[J]. J Fuel Chem Technol, 2018, 46(12): 1513-1519. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract29318.shtml
    [7] MU W T, ZHU J, ZHANG S, GUO Y Y, SU L Q, LI X Y, LI Z. Novel proposition on mechanism aspects over Fe-Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTs analysis[J]. Catal Sci Technol, 2016, 6(20): 7532-7548. doi: 10.1039/C6CY01510G
    [8] 杜学森.钛基SCR脱硝催化剂中毒失活及抗中毒机理的实验和分子模拟研究[D].杭州: 浙江大学, 2014. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD&filename=1015539632.nh

    DU Xue-sen. An experimental and theoretical study on the anti-poisoning of the titania-based SCR catalyst[D]. Hangzhou: Zhejiang University, 2014. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFD&filename=1015539632.nh
    [9] WEI L, CUI S P, GUO H X, ZHANG L J. The effect of alkali metal over Mn/TiO2 for low-temperature SCR catalyst of NO with NH3 through DRIFT and DFT[J]. Comput Mater Sci, 2018, 144: 216-222. doi: 10.1016/j.commatsci.2017.12.013
    [10] PARK E, KIM M, JUNG H, CHIN S, JURNG J. Effect of sulfur on Mn/Ti catalysts prepared using chemical vapor condensation (CVC) for low-temperature NO reduction[J]. ACS Catal, 2013, 3(7): 1518-1525. doi: 10.1021/cs3007846
    [11] PAPPAS D K, BONINGARI T, BOOLCHAND P, SMIRNIOTIS P G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature selective catalytic reduction (SCR) of NOx by NH3[J]. J Catal, 2016, 334: 1-13. doi: 10.1016/j.jcat.2015.11.013
    [12] CHEN J Y, ZHU B Z, SUN Y L, YIN S L, ZHU Z C, LI J X. Investigation of low-temperature selective catalytic reduction of NOx with ammonia over Mn-modified Fe2O3/AC catalysts[J]. J Braz Chem Soc, 2018, 29(1): 79-87.
    [13] GAO F Y, TANG X L, YI H H, ZHAO S Z, WANG J E, GU T. Improvement of activity, selectivity and H2O & SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx[J]. Appl Surf Sci, 2019, 466: 411-424. doi: 10.1016/j.apsusc.2018.09.227
    [14] QU L, LI C T, ZENG G M, ZHNAG M Y, FU M F, MA J F, ZHAN F M, LUO D Q. Support modification for improving the performance of MnOx-CeOy/gamma-Al2O3 in selective catalytic reduction of NO by NH3[J]. Chem Eng J, 2014, 242: 76-85. doi: 10.1016/j.cej.2013.12.076
    [15] LIU C, SHI J W, GAO C, NIU C M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: A review[J]. Appl Catal A: Gen, 2016, 522: 54-69. doi: 10.1016/j.apcata.2016.04.023
    [16] 周佳丽, 王宝冬, 马静, 李歌, 孙琦, 徐文强, 李永龙.锰基低温SCR脱硝催化剂抗硫抗水性能研究进展[J].环境化学, 2018, 37(4): 782-791. http://d.old.wanfangdata.com.cn/Periodical/hjhx201804018

    ZHOU Jia-li, WANG Bao-dong, MA Jing, LI Ge, SUN Qi, XU Wen-qiang, LI Yong-long. SO2 and H2O poisoning resistance of manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx[J]. Environ Chem, 2018, 37(4): 782-791. http://d.old.wanfangdata.com.cn/Periodical/hjhx201804018
    [17] QU L, LI C T, ZENG G M, ZHANG M Y, FU M F, MA J F, ZHAN F M, LUO D Q. Support modification for improving the performance of MnOx-CeOy/gamma-Al2O3 in selective catalytic reduction of NO by NH3[J]. Chem Eng J, 2014, 242: 76-85. doi: 10.1016/j.cej.2013.12.076
    [18] 杨超, 程华, 黄碧纯.抗SO2和H2O中毒的低温NH3-SCR脱硝催化剂研究进展[J].化工进展, 2014, 33(4): 907-913. http://d.old.wanfangdata.com.cn/Periodical/hgjz201404020

    YANG Chao, CHENG Hua, HUANG Bi-chun. Review of deNOx catalysts with SO2 and H2O poisoning resistance for low-temperature NH3-SCR[J]. Chem Ind Eng Prog, 2014, 33(4): 907-913. http://d.old.wanfangdata.com.cn/Periodical/hgjz201404020
    [19] LIU Z, YANG Y, MI J H, TAN X L, SONG Y. Synthesis of copper-containing ordered mesoporous carbons for selective hydrogenation of cinnamaldehyde[J]. Catal Commun, 2012, 21: 58-62. doi: 10.1016/j.catcom.2012.01.024
    [20] CHEN X, XU X, FEI Z Y, XIE X X, LOU J W, TANG J H, CUI M F, QIAO X. CeO2 nanodots embedded in a porous silica matrix as an active yet durable catalyst for HCl ocidation[J]. Catal Sci Technol, 2016, 6(13): 5116-5123. doi: 10.1039/C5CY02300A
    [21] 黄金, 仲兆平, 朱林, 薛建明, 许月阳, 吴培亭.锰铈改性钒钨钛中低温SCR催化剂脱硝及抗水抗硫性能[J].化工进展, 2018, 37(6): 2242-2248. http://d.old.wanfangdata.com.cn/Periodical/hgjz201806026

    HUANG Jin, ZHONG Zhao-ping, ZHU Lin, XUE Jian-ming, XU Yue-yang, WU Pei-ting. DeNOx performance and resistance to H2O and SO2 of Mn-Ce doped V-W/Ti catalyst at middle-low temperature[J]. Chem Ind Eng Prog, 2018, 37(6): 2242-2248. http://d.old.wanfangdata.com.cn/Periodical/hgjz201806026
    [22] 李伟, 张成, 李鑫, 谭鹏, 方庆艳, 陈刚. Ho掺杂对Mn-Ce/TiO2低温SCR催化剂的脱硝性能影响[J].燃料化学学报, 2017, 45(12): 1508-1513. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19141.shtml

    LI Wei, ZHANG Cheng, LI Xin, TAN Peng, FANG Qing-yan, CHEN Gang. Influence of Ho doping on the deNOx performance of Mn-Ce/TiO2 low temperature SCR catalyst[J]. J Fuel Chem Technol, 2017, 45(12): 1508-1513. http://manu60.magtech.com.cn/rlhxxb/CN/abstract/abstract19141.shtml
    [23] 胡宇峰, 薛建明, 王小明, 盛重义, 廖伟平. Mn-Ce/TiO2低温选择性催化还原催化剂二氧化硫中毒及再生特性[J].工业催化, 2013, 21(4): 27-33. doi: 10.3969/j.issn.1008-1143.2013.04.006

    HU Yu-feng, XUE Jian-ming, WANG Xiao-ming, SHENG Zhong-yi, LIAO Wei-ping. Research on characteristics of SO2-poison and regeneration of Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction[J]. Ind Catal, 2013, 21(4): 27-33. doi: 10.3969/j.issn.1008-1143.2013.04.006
    [24] DELIMARIS D, LOANNIDES T. VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method[J]. Appl Catal B: Environ, 2008, 84(12): 303-312. http://www.sciencedirect.com/science/article/pii/S0926337308001355
    [25] KANG M, PARK E D, KIM J M, YIE J E. Manganese oxide catalysts for NOx reduction with NH3 at low temperatures[J]. Appl Catal A: Gen, 2007, 327(2): 261-269. doi: 10.1016/j.apcata.2007.05.024
    [26] LIU F D, HE H, DING Y, ZHANG C B. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ, 2009, 93(12): 194-204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd24003bd391131bd3be8817ed7852be
    [27] VENKATASWAMY P, RAO K N, JAMPAIAH D, REDDY B M. Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures[J]. Appl Catal B: Environ, 2015, 162: 122-132. doi: 10.1016/j.apcatb.2014.06.038
    [28] SANTOS V P, PEREIRA M F R, ORFAO J J M, FIGUEIREDO J L. The role of lattice oxygen on activity of mangnese oxides towards the oxidation of volatile organic compounds[J], Appl Catal B: Environ, 2010, 99(1/2): 353-363. http://www.sciencedirect.com/science/article/pii/S0926337310003139
    [29] WU Z B, JIN R B, LIU Y, WANG H Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun, 2008, 9(13): 2217-2220. doi: 10.1016/j.catcom.2008.05.001
    [30] ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, BOOLCHAND P, SMIRNIOTIS P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Appl Cataly B: Environ, 2007, 76(1/2): 123-134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35cb995e5856d8b4b81e52a4390273ea
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  45
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-13
  • 修回日期:  2019-11-15
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-01-10

目录

    /

    返回文章
    返回