留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaNiO3的焙烧温度对甲醇水蒸气重整制氢CuO/LaNiO3催化剂的影响

肖国鹏 乔韦军 王丽宝 张磊 张健 王宏浩

肖国鹏, 乔韦军, 王丽宝, 张磊, 张健, 王宏浩. LaNiO3的焙烧温度对甲醇水蒸气重整制氢CuO/LaNiO3催化剂的影响[J]. 燃料化学学报(中英文), 2020, 48(2): 213-220.
引用本文: 肖国鹏, 乔韦军, 王丽宝, 张磊, 张健, 王宏浩. LaNiO3的焙烧温度对甲醇水蒸气重整制氢CuO/LaNiO3催化剂的影响[J]. 燃料化学学报(中英文), 2020, 48(2): 213-220.
XIAO Guo-peng, QIAO Wei-jun, WANG Li-bao, ZHANG Lei, ZHANG Jian, WANG Hong-hao. Effect of calcination temperature of LaNiO3 on CuO/LaNiO3 catalyst for hydrogen production via methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 213-220.
Citation: XIAO Guo-peng, QIAO Wei-jun, WANG Li-bao, ZHANG Lei, ZHANG Jian, WANG Hong-hao. Effect of calcination temperature of LaNiO3 on CuO/LaNiO3 catalyst for hydrogen production via methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 213-220.

LaNiO3的焙烧温度对甲醇水蒸气重整制氢CuO/LaNiO3催化剂的影响

基金项目: 

国家自然科学基金 21376237

辽宁省教育厅科学研究经费项目 L2019038

辽宁省自然科学基金面上项目 2019-MS-221

详细信息
  • 中图分类号: O643

Effect of calcination temperature of LaNiO3 on CuO/LaNiO3 catalyst for hydrogen production via methanol steam reforming

Funds: 

the National Natural Science Foundation of China 21376237

Scientific research funds project of Liaoning education department L2019038

Natural Science Fund in Liaoning Province 2019-MS-221

More Information
  • 摘要: 采用溶胶凝胶法合成了LaNiO3钙钛矿型氧化物载体,再采用浸渍法制备了CuO/LaNiO3催化剂,并通过XRF、XRD、BET、H2-TPR和XPS等手段对催化剂进行了表征,考察了LaNiO3钙钛矿的焙烧温度对CuO/LaNiO3催化剂结构及其催化甲醇水蒸气重整制氢性能的影响。结果表明,载体焙烧温度主要影响了催化剂的表面晶格氧缺位,活性组分和载体间的相互作用。当载体焙烧温度为800℃时,催化剂表面氧空穴较多,活性组分与载体间相互作用较强,因此,催化甲醇水蒸气重整制氢活性较好。
  • 图  1  不同焙烧温度下制备的钙钛矿载体的XRD谱图

    Figure  1  XRD patterns of the perovskite support prepared at different calcination temperatures

    a: LaNiO3-600; b: LaNiO3-700; c: LaNiO3-800; d: LaNiO3-900
    ■: La2O3; : ▼: NiO; Δ: La2NiO4; ▲: La2Ni2O5; ◆: perovskite

    图  2  不同焙烧温度下制备的LaNiO3钙钛矿催化材料的XRD谱图

    Figure  2  XRD patterns of the LaNiO3 perovskite catalytic materials prepared at different calcination temperatures

    a: CuO/LaNiO3-600; b: CuO/LaNiO3-700; c: CuO/LaNiO3-800; d: CuO/LaNiO3-900
    ●: CuO; ▼: NiO; ■: La2O3; Δ: La2NiO4; ▲: La2Ni2O5; ◆: perovskite

    图  3  不同焙烧温度下制备的CuO/LaNiO3-t催化剂的H2-TPR谱图

    Figure  3  H2-TPR profiles of the CuO/LaNiO3-t catalysts prepared at different calcination temperatures

    a: CuO/LaNiO3-600; b: CuO/LaNiO3-700; c: CuO/LaNiO3-800; d: CuO/LaNiO3-900

    图  4  不同焙烧温度下制备的钙钛矿催化剂的La 3d的XPS谱图

    Figure  4  XPS spectra of La 3d of the catalysts prepared at different calcination temperatures

    a: CuO/LaNiO3-600; b: CuO/LaNiO3-700; c: CuO/LaNiO3-800; d: CuO/LaNiO3-900

    图  5  不同焙烧温度下制备的钙钛矿催化剂的Ni 2p的XPS谱图

    Figure  5  XPS profiles of the Ni 2p of the perovskite catalyst prepared at different calcination temperatures

    a: CuO/LaNiO3-600; b: CuO/LaNiO3-700; c: CuO/LaNiO3-800; d: CuO/LaNiO3-900

    图  6  不同焙烧温度下制备的钙钛矿催化剂的Cu 2p的XPS谱图

    Figure  6  XPS spectra of Cu 2p of the perovskite catalysts prepared at different calcination temperatures

    a: CuO/LaNiO3-600; b: CuO/LaNiO3-700; c: CuO/LaNiO3-800; d: CuO/LaNiO3-900

    图  7  不同焙烧温度下制备的钙钛矿催化剂的Cu俄歇谱图

    Figure  7  Cu Auger spectra of the perovskite catalysts prepared at different calcination temperatures

    a: CuO/LaNiO3-600; b: CuO/LaNiO3-700; c: CuO/LaNiO3-800; d: CuO/LaNiO3-900

    图  8  不同焙烧温度下制备钙钛矿催化剂的O 1s的XPS谱图

    Figure  8  XPS spectra of O 1s of the perovskite catalysts prepared at different calcination temperatures

    a: CuO/LaNiO3-600; b: CuO/LaNiO3-700; c: CuO/LaNiO3-800; d: CuO/LaNiO3-900

    图  9  反应温度对催化剂活性的影响

    Figure  9  Effects of the reaction temperature on the catalytic performance

    (reaction conditions: atmospheric pressure, GHSV=800 h-1, W/M=1.2:1, no carrier gas)
    a: CuO/LaNiO3-600; b: CuO/LaNiO3-700; c: CuO/LaNiO3-800; d: CuO/LaNiO3-900

    图  10  反应温度对催化剂CO体积分数的影响

    Figure  10  Effect of reaction temperature on the CO content in tail gas

    (reaction conditions: atmospheric, GHSV=800 h-1, W/M=1.2:1, no carrier gas)
    a: CuO/LaNiO3-600; b: CuO/LaNiO3-700; c: CuO/LaNiO3-800; d: CuO/LaNiO3-900

    表  1  不同焙烧温度下制备的钙钛矿催化材料的元素含量

    Table  1  Elemental content of perovskite catalytic materials prepared at different calcination temperatures

    Catalyst Content of element w/%
    Cu La Ni O
    CuO/LaNiO3-600 8.1 53.2 21.7 17.0
    CuO/LaNiO3-700 8.2 50.0 24.4 17.4
    CuO/LaNiO3-800 8.5 51.2 23.0 17.3
    CuO/LaNiO3-900 8.3 50.1 24.3 17.3
    Normal value 9.0 51.4 21.7 17.9
    下载: 导出CSV

    表  2  催化剂的物化性质及其用于催化甲醇水蒸气重整反应中氢气产率

    Table  2  Physicochemical properties and catalytic performance of the catalysts

    Catalyst ABET /(m2·g-1) Pore volume v/(cm3·g-1) Bore diameter d/nm dCuO /nm Cu surface areaa A/(m2·gcat-1) H2 production rateb /(cm3·kg-1·s-1)
    LaNiO3-600 11.5 0.03 3.86 - - -
    LaNiO3-700 7.9 0.03 3.36 - - -
    LaNiO3-800 7.4 0.02 3.06 - - -
    LaNiO3-900 5.3 0.01 3.37 - - -
    CuO/LaNiO3-600 12.4 0.04 3.79 26.1 0.8 218.0
    CuO/LaNiO3-700 10.8 0.02 3.41 30.1 1.0 372.9
    CuO/LaNiO3-800 7.5 0.02 3.03 20.2 1.2 1007.2
    CuO/LaNiO3-900 7.6 0.02 3.85 23.6 1.1 491.6
    a: determined by N2O experiments; b: reaction conditions: atmospheric pressure, 240 ℃, W/M=1.2:1, GHSV=800 h-1, no carrier gas
    下载: 导出CSV

    表  3  不同焙烧温度下催化剂和O 1s XPS曲线拟合

    Table  3  O 1s XPS curve-fitting results of the catalysts calcined at various temperatures

    Catalyst Oads/(Oads+O-OH+Olatt)
    CuO/LaNiO3-600 0.20
    CuO/LaNiO3-700 0.24
    CuO/LaNiO3-800 0.31
    CuO/LaNiO3-900 0.21
    下载: 导出CSV
  • [1] LIN L, ZHOU W, GAO R, YAO S, ZHANG X, XU W. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648):80-83. doi: 10.1038/nature21672
    [2] LIU X, MEN Y, WANG J, HE R, WANG Y. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming[J]. J Power Sources, 2017, 364:341-350. doi: 10.1016/j.jpowsour.2017.08.043
    [3] BUTTNER W, RIVKIN C, BURGESS R, HARTMANN K, BLOOMFIELD I, BUBAR M. Hydrogen monitoring requirements in the global technical regulation on hydrogen and fuel cell vehicles[J]. Int J Hydrogen Energy, 2017, 42(11):7664-7671. doi: 10.1016/j.ijhydene.2016.06.053
    [4] HAN H, MU Z, LIU Z, ZHAO F. Abating transport GHG emissions by hydrogen fuel cell vehicles:Chances for the developing world[J]. Front Energy, 2018, 12(3):1-15. http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-nyydlgc201803013
    [5] ROSES L, MANZOLINI G, CAMPANARI S, WIT E, WALTER M. Techno-economic assessment of membrane reactor technologies for pure hydrogen production for fuel cell vehicle fleets[J]. Energy Fuels, 2013, 27(8):4423-4431. doi: 10.1021/ef301960e
    [6] CHOI H J, KANG M. Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded[J]. Int J Hydrogen Energy, 2007, 32(16):3841-3848. doi: 10.1016/j.ijhydene.2007.05.011
    [7] 苏石龙, 张磊, 张艳, 雷俊腾, 桂建舟, 刘丹, 刘道胜, 潘立卫.千瓦级PEMFC甲醇水蒸气重整制氢过程热力学模拟[J].石油化工高等学校学报, 2015, 28(2):19-25. doi: 10.3969/j.issn.1006-396X.2015.02.004

    SU Shi-long, ZHANG Lei, ZHANG Yan, LEI Jun-teng, GUI Jian-zhou, LIU Dan, LIU Dan-sheng, PAN Li-wei. Thermodynamic simulation for hydrogen production in the methanol steam reforming system of kilowatt PEMFC[J]. J Petrochem Univ, 2015, 28(2):19-25. doi: 10.3969/j.issn.1006-396X.2015.02.004
    [8] YANG H, CHEN Y, CUI X, WANG G, CEN Y, DENG T. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation[J]. Angew Chem Int Ed, 2018, 130(7):1836-1840. doi: 10.1002/anie.201710605
    [9] JEON N J, NOH J H, YANG W S, KIM Y C, RYU S, SEO J. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535):476-480. doi: 10.1038/nature14133
    [10] KHALESI A, ARANDIYAN H R, PARVARI M. effects of lanthanum substitution by strontium and calcium in la-ni-al perovskite oxides in dry reforming of methane[J]. J Catal, 2008, 29(10):18-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cuihuaxb200810004
    [11] YANG S Q, ZHOU F, LIU Y J, ZHANG L, YU C, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy, 2019, 44(14):7252-7261. doi: 10.1016/j.ijhydene.2019.01.254
    [12] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭.稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(2):179-188. doi: 10.3969/j.issn.0253-2409.2018.02.007
    [13] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy, 2017, 42(15):9930-9937. doi: 10.1016/j.ijhydene.2017.01.229
    [14] 杨淑倩, 张娜, 贺建平, 张磊, 王宏浩, 白金, 张健, 刘道胜, 杨占旭. Ce的浸渍顺序对Cu/Zn-Al水滑石衍生催化剂用于甲醇水蒸气重整制氢性能的影响[J].燃料化学学报, 2018, 46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014

    YANG Shua-qian, ZHANG Na, HE Jian-ping, ZHANG Lei, WANG Hong-hao, BAI Jin, ZHANG Jian, LIU Dao-sheng, YANG Zhan-xu. Effect of impregnation sequence of Ce on the performance of Cu/Zn-Al catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(4):479-488. doi: 10.3969/j.issn.0253-2409.2018.04.014
    [15] 贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. CeO2改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J].高等学校化学学报, 2017, 38:1822-1828. doi: 10.7503/cjcu20170158

    HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ, 2017, 38:1822-1828. doi: 10.7503/cjcu20170158
    [16] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy, 2013, 38(11):4397-4406. doi: 10.1016/j.ijhydene.2013.01.053
    [17] TANG P S, SUN H, CAO F, YANG J T, NI S L, CHEN H F. Visible-light driven LaNiO3 nanosized photocatalysts prepared by a sol-gel process[J]. Adv Mater Res, 2011, 279(11):83-87. https://www.scientific.net/AMR.279.83
    [18] LI Y Y, YAO S S, WEN W, XUE L H, YAN Y W. Sol-gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3[J]. J Alloys Compd, 491(1/2):560-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b9be17f1150e380fb4e3fe9d5db2f0b
    [19] MORADI G R, KHOSRAVIAN F, RAHMANZADEH M. Effects of partial substitution of Ni by Cu in LaNiO3 perovskite catalyst for dry methane reforming[J]. Chin J Catal, 2012, 33(4/6):797-801. https://www.sciencedirect.com/science/article/pii/S1872206711603781
    [20] 牛春艳, 徐占林.不同焙烧温度制备的类钙钛矿型复合氧化物La2NiO4的性能研究[J].硅酸盐通报, 2010, 29(5):1231-1234. http://d.old.wanfangdata.com.cn/Periodical/gsytb201005048

    NIU Chun-yan, XU Zhan-lin. Study on properties of perovskite-like composite oxides La2NiO4 prepared at different roasting temperatures[J]. Bull Chin Ceram Soc, 2010, 29(5):1231-1234. http://d.old.wanfangdata.com.cn/Periodical/gsytb201005048
    [21] 杨彩虹, 韩怡卓, 李文彬. Ni-La2O3/C催化剂上甲醇羰基化反应性能的研究[J].燃料化学学报, 2000, 28(5):392-395. doi: 10.3969/j.issn.0253-2409.2000.05.003

    YANG Cai-hong, HAN Yi-zhuo, LI Wen-bin. Study on the carbonylation of methanol over Ni-La2O3/C catalyst[J]. J Fuel Chem Techno, 2000, 28(5):392-395. doi: 10.3969/j.issn.0253-2409.2000.05.003
    [22] MICKEVIČIUS S, GREBINSKIJ S, BONDARENKA V, VENGALIS B, ORLOWSKI A. Investigation of epitaxial LaNiO3-x thin films by high-energy XPS[J]. J Alloys Compd, 2006, 423(1):107-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aea5667a7ce453924861fe0cf50cc6ca
    [23] HONMA T, BENINO Y, FUJIWARA T, KOMATSU T, DIMITROV V. Electronic polarizability, optical basicity, and interaction parameter of La2O3 and related glasses[J]. J Appl Phys, 2002, 91(5):2942-2950. doi: 10.1063/1.1436292
    [24] FU Z, HU J, HU W, YANG S, LUO Y. Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials:Non-linear least-squares fitting of XPS spectra[J]. Appl Surf Sci, 2018, 441:1048-1056. doi: 10.1016/j.apsusc.2018.02.114
    [25] GONZALEZ-DELACRUZ V M, TERNERO F, PEREIGUEZ R, CABALLERO A, HOLGADO J P. Study of nanostructured Ni/CeO2 catalysts prepared by combustion synthesis in dry reforming of methane[J]. Appl Catal A:Gen, 2010, 384(1/2):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83b73d40dbfbd7a7dae7a097a8cd353e
    [26] SEIM H, MÖLSÄ H, NIEMINEN M, FJELLVG H, NIINIST L. Deposition of LaNiO3 thin films in an atomic layer epitaxy reactor[J]. J Mater Chem, 1997, 7(3):449-454. doi: 10.1039/a606316k
    [27] PENG X, OMASTA T J, ROLLER J M, MUSTAIN W E. Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells[J]. Front Energy, 2017, 11(3):299-309.
    [28] WANG C, CHENG Q P, WANG X L, MA K, BAI X Q, TAN S R, TIAN Y, TONG D, ZHENG L R, ZHANG J, LI X G. Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals[J]. Appl Surf Sci, 2017, 422(2):932-943. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=391accdd48df1b637266f8ce42ac61b4
    [29] BENNICI S, GERVASINI A, RAVASIO N, ZACCHERIA F. Optimization of tailoring of CuOx species of silica alumina supported catalysts for the selective catalytic reduction of NOx[J]. J Phys Chem B, 2003, 107(22):5168-5176. doi: 10.1021/jp022064x
    [30] AFONASENKO T N, TSYRULNIKOV P G, GULYAEVA T I, LEONTEVA N N, SMIRNOVA N S, KOCHUBEI D I, SUPRUN E A, SALANOV A N. (CuO-CeO2)/glass cloth catalysts for selective CO oxidation in the presence of H2:The effect of the nature of the fuel component used in their surface self-propagating high-temperature synthesis on their properties[J]. Kinet Catal, 2013, 54(1):59-68.
    [31] KULKARNI G U, RAO C N R. EXAFS and XPS investigations of Cu/ZnO catalysts and their interaction with CO and methanol[J]. Top Catal, 2003, 22(3):183-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c18db8e5a8333691cda5a303df6a1fb8
    [32] PEREÑÍGUEZ R, GONZÁLEZ-DELACRUZ V M, HOLGADO J P, CABALLERO A. Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts[J]. Appl Catal B:Environ, 2010, 93(3):346-353.
    [33] 王东哲, 田志强, 张宣娇, 冯旭, 张磊, 白金.制备方法对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J].石油化工, 2019, 48(4):335-341. doi: 10.3969/j.issn.1000-8144.2019.04.002

    WANG Dong-zhe, TIAN Zhi-qiang, ZHANG Xuan-jiao, FENG Xu, ZHANG Lei, BAI Jin. Effect of preparation methods on CuO/CeO2 catalysts for hydrogen production from methanol steam reforming[J]. Petro Technol, 2019, 48(4):335-341. doi: 10.3969/j.issn.1000-8144.2019.04.002
    [34] 庆绍军, 侯晓宁, 刘雅杰, 王磊, 李林东, 高志贤. Cu-Ni-Al尖晶石催化甲醇水蒸气重整制氢性能的研究[J].燃料化学学报, 2018, 46(10):69-76. http://www.ccspublishing.org.cn/article/id/b14d7a58-9df6-4e70-aff6-8011a66c65ea

    QING Shao-jun, HOU Xiao-ning, LIU Ya-jie, WANG Lei, LI Lin-dong, GAO Zhi-xian. Study on Cu-Ni-Al spinel catalytic performance for hydrogen production from methanol steam reforming[J]. J Fuel Chem Technol, 2018, 46(10):69-76. http://www.ccspublishing.org.cn/article/id/b14d7a58-9df6-4e70-aff6-8011a66c65ea
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  64
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-28
  • 修回日期:  2019-12-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回