留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of preparation method of nanosized zeolite HY-Al2O3 composite as NiMo catalyst support on diesel HDS

YIN Hai-liang LIU Xin-liang ZHOU Tong-na LIN Ai-guo

尹海亮, 刘新亮, 周同娜, 蔺爱国. NiMo催化剂载体中纳米HY分子筛和氧化铝混合方式对柴油加氢脱硫性能的影响[J]. 燃料化学学报(中英文), 2018, 46(8): 950-956.
引用本文: 尹海亮, 刘新亮, 周同娜, 蔺爱国. NiMo催化剂载体中纳米HY分子筛和氧化铝混合方式对柴油加氢脱硫性能的影响[J]. 燃料化学学报(中英文), 2018, 46(8): 950-956.
YIN Hai-liang, LIU Xin-liang, ZHOU Tong-na, LIN Ai-guo. Effect of preparation method of nanosized zeolite HY-Al2O3 composite as NiMo catalyst support on diesel HDS[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 950-956.
Citation: YIN Hai-liang, LIU Xin-liang, ZHOU Tong-na, LIN Ai-guo. Effect of preparation method of nanosized zeolite HY-Al2O3 composite as NiMo catalyst support on diesel HDS[J]. Journal of Fuel Chemistry and Technology, 2018, 46(8): 950-956.

NiMo催化剂载体中纳米HY分子筛和氧化铝混合方式对柴油加氢脱硫性能的影响

基金项目: 

National Natural Science Foundation of China 21206197

Shandong Provincial Natural Science Foundation, China 2016GSF117030

Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province, China BS2013CL021

详细信息
  • 中图分类号: O643.36

Effect of preparation method of nanosized zeolite HY-Al2O3 composite as NiMo catalyst support on diesel HDS

Funds: 

National Natural Science Foundation of China 21206197

Shandong Provincial Natural Science Foundation, China 2016GSF117030

Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province, China BS2013CL021

More Information
    Corresponding author: YIN Hai-liang, Tel: 86-546-839-3193, E-mail: yinhl@upc.edu.cn
  • 摘要: 以纳米HY分子筛-氧化铝混合物为载体,根据两者混合方式的不同(溶胶凝胶法和机械混合法)制备了两种NiMo加氢脱硫催化剂,并对其进行了XRD、BET、TPD、H2-TPR、HRTEM和FT-IR等表征。与溶胶凝胶法催化剂相比,机械混合法催化剂表现出了较好的纹理结构和更高酸量,其金属相更易还原,边角位Mo原子的分散度更高,表现出了更高的加氢脱硫性能。但溶胶凝胶法催化剂的type-Ⅱ Ni-Mo-S活性相前驱物比例更高,MoS2晶片长度更大,堆垛程度更高,活性组分分散度较差。虽然溶胶凝胶法有利于提高type-Ⅱ Ni-Mo-S活性相前驱物比例,但是该方法导致的较差孔结构抑制了这种优势,并且降低了活性组分分散度,减弱了催化活性。
  • Figure  1  XRD patterns of two sulfide catalysts and Al2O3

    Figure  2  XRD patterns of nano Y zeolite after calcinations

    Figure  3  N2 adsorption-desorption isotherms of two catalysts

    Figure  4  Pore size distribution of two catalysts

    Figure  5  NH3-TPD profiles of two catalysts

    Figure  6  FT-IR profiles of two catalysts

    Figure  7  H2-TPR profiles of two catalysts

    Figure  8  HRTEM images of (a) Cat-S and (b) Cat-M

    Figure  9  MoS2 stacking number distribution of two catalysts

    Table  1  Textural properties of two catalysts

    Sample SBET/
    (m2·g-1)
    Smi/
    (m2·g-1)
    Pore volume
    v/(cm3·g-1)
    Pore size
    d/nm
    Cat-S 124.9 15.3 0.27 9.1
    Cat-M 207.6 27.6 0.41 9.2
    下载: 导出CSV

    Table  2  Amounts of the acid sites of two catalysts

    Sample Amount of acid sites/(mmol·g-1 catalyst) B/L (ratio)
    L B
    Cat-S 0.32 0.27 0.84
    Cat-M 0.53 0.45 0.85
    下载: 导出CSV

    Table  3  Average stacking degree (NA), average slab length (LA) and fraction available Mo (fMo) of two catalysts

    Catalyst NA LA /nm fMo
    Cat-M 3.1 3.52 0.32
    Cat-S 3.6 4.32 0.27
    下载: 导出CSV

    Table  4  Hydrotreating activity results of FCC diesel over two catalysts

    Feedstock Cat-M Cat-S
    d20 ℃/(g·cm-3) 0.970 0.930 0.935
    S concentration, w/(μg·g-1) 7216 652 981
    HDS rate/% - 91.7 86.4
    Distillation range t/℃
    IBP 222 198 201
    5% 234 214 219
    10% 245 221 226
    50% 288 249 255
    90% 357 319 306
    FBP 380 326 327
    下载: 导出CSV

    Table  5  S removal rate of DBT, 4-MDBT and 4, 6-DMDBT over different catalysts

    Removal rate Cat-M Cat-S
    DBT/% 99.93 95.47
    4-MDBT/% 81.11 76.15
    4, 6-DMDBT/% 63.42 61.22
    下载: 导出CSV
  • [1] ZHOU W W, LIU M F, ZHANG Q, WEI Q, DING S J, ZHOU Y S. Synthesis of NiMo catalysts supported on gallium-containing mesoporous Y zeolites with different gallium contents and their high activities in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. ACS Catal, 2017, 7(11):7665-7679. doi: 10.1021/acscatal.7b02705
    [2] DING L, ZHENG Y, ZHANG Z, RING Z, CHEN J. HDS, HDN, HDA and hydrocracking of model compounds over Mo-Ni catalysts with various acidities[J]. Appl Catal A:Gen, 2007, 319:25-37. doi: 10.1016/j.apcata.2006.11.016
    [3] JORGE R, AÍDA G A, FELIPE S M, VÍCTOR M A, PERLA C V, LAETITIA O, FRANÇOISE M. HDS of 4, 6-DMDBT over NiMoP/(x)Ti-SBA-15 catalysts prepared with H3PMo12O40[J]. Energy Fuels, 2012, 26(2):773-782. doi: 10.1021/ef201590g
    [4] GUTIERREZ O Y, KLIMOVA T J. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulfurization of DBT and 4, 6-DMDBT[J]. J Catal, 2011, 281(1):50-62. doi: 10.1016/j.jcat.2011.04.001
    [5] NAVA R, INFANTES M A, CASTANO P, LOPEZ R G, PAWELEC B. Inhibition of CoMo/HMS catalyst deactivation in the HDS of 4, 6-DMDBT by support modification with phosphate[J]. Fuel, 2011, 90(8):2726-2737. doi: 10.1016/j.fuel.2011.03.049
    [6] FU W Q, ZHANG L, TANG T D, KE Q P, WANG S, HU J B, FANG G Y, LI J X, XIAO F S. Extraordinarily high activity in the hydrodesulfurization of 4, 6-Dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y[J]. J Am Chem Soc, 2011, 133(39):15346-15349. doi: 10.1021/ja2072719
    [7] ZHANG L, FU W Q, KE Q P, ZHANG S, JIN H L, HU J B, WANG S, TANG T D. Study of hydrodesulfurization of 4, 6-DM-DBT over Pd supported on mesoporous USY zeolite[J]. Appl Catal A:Gen, 2012, 433/434:251-257. doi: 10.1016/j.apcata.2012.05.028
    [8] RICHARD F, BOITA T, PÉROT G. Reaction mechanism of 4, 6-dimethyldibenzothiophene desulfurization over sulfided NiMoP/Al2O3-zeolite catalysts[J]. Appl Catal A:Gen, 2007, 320:69-79.
    [9] YIN H L, ZHOU T N, LIU Y Q. NiMo/Al2O3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel[J]. J Nat Gas Chem, 2011, 20(4):441-448. doi: 10.1016/S1003-9953(10)60204-6
    [10] TANG T, ZHANG L, FU W. Design and synthesis of metal sulfide catalysts supported on zeolite nanofiber dundles with unprecedented hydrodesulfurization activities[J]. J Am Chem Soc, 2013, 135(31):11437-11440. doi: 10.1021/ja4043388
    [11] SRINIVAS B N, MAITY S K, PRASAD V V D N, RANA M S, KUMAR M, DHAR G M, RAO P T S R. Support effect studies on TiO2-Al2O3 mixed oxide hydroprocessing catalysts[J]. Stud Surf Sci Catal, 1998, 113:497-506. http://www.osti.gov/scitech/biblio/20050862-solid-state-vanadium-nmr-studies-supported-sub-sub-wo-sub-tio-sub-catalysts
    [12] MAITY S K, ANCHEYTA J, RANA M S, RAYO P. Alumina-titania mixed oxide used as support for hydrotreating catalysts of maya heavy crude-effect of support preparation methods[J]. Energy Fuels, 2016, 20(2):427-431.
    [13] BARRERA M C, VINIEGRA M, ESCOBAR J, VRINAT M, DE LOS REYES J A, MURRIETA F, GARCÍA J. Highly active MoS2 on wide-pore ZrO2-TiO2 mixed oxides[J]. Catal Today, 2004, 98(1/2):131-139.
    [14] BARRERA M C, ESCOBAR J, DE LOS REYES J A, CORTÉS M A, VINIEGRA M, HERNÁNDEZ A. Effect of solvo-thermal treatment temperature on the properties of sol-gel ZrO2-TiO2 mixed oxides as HDS catalyst supports[J]. Catal Today, 2006, 116(4):498-504. doi: 10.1016/j.cattod.2006.06.030
    [15] YIN H L, LIU X L, YUAN Y Y, ZHOU T N. Nanosized HY zeolite-alumina composite support for hydrodesulfurization of FCC diesel[J]. J Porous Mater, 2015, 22(1):29-36. doi: 10.1007/s10934-014-9869-5
    [16] LIU B J, ZHA X J, MENG Q M, HOU H J, GAO S S, ZHANG J X, SHENG S S, YANG W S. Preparation of NiW/TiO2-Al2O3 hydrodesulfurization catalyst with microwave technique[J]. Chin J Catal, 2005, 26(6):458-462.
    [17] PONCELET G, DUBRU M L. An infrared study of the surface acidity of germanic near-faujasite zeolite by pyridine adsorption[J]. J Catal, 1978, 52(2):321-331.
    [18] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J], J Catal, 1993, 141(2):347-354. doi: 10.1006/jcat.1993.1145
    [19] TOPSØE H, CLAUSEN B S, CANDIA R, WIVEL C, MØRUP S. In situ mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts:Evidence for and nature of a CoMoS phase[J]. J Catal, 1981, 68(2):433-452. doi: 10.1016/0021-9517(81)90114-7
    [20] TOPSØE H, CLAUSEN B S, TOPSØE N Y, ZEUTHEN P. Progress in the design of hydrotreating catalysts based on fundamental molecular insight[J]. Stud Surf Sci Catal, 1989, 53:77-102. doi: 10.1016/S0167-2991(08)61061-7
    [21] MARZARI J A, RAJAGOPAL S, MIRANDA R. Bifunctional mechanism of pyridine hydrodenitrogenation[J]. J Catal, 1995, 156(2):255-264. doi: 10.1006/jcat.1995.1252
    [22] HENSEN E, KOOYMAN P, VAN M Y, VAN K A M. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001, 199(2):224-235. https://www.researchgate.net/publication/241951970_Morphology_study_of_MoSsub_2-_and_WSsub_2-based_hydrotreating_catalysts_by_high-resolution_electron_microscopy
    [23] HENSEN E J M, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. A refinement on the notion of type Ⅰ and Ⅱ (Co)MoS phases in hydrotreating catalysts[J]. Catal Lett, 2002, 84(1/2):59-67.
    [24] EIJSBOUTS S, HEINERMAN J J L, ELZERMAN H J W. MoS2 structures in high-activity hydrotreating catalysts:Ⅰ. Semi-quantitative method for evaluation of transmission electron microscopy results. Correlations between hydrodesulfurization and hydrodenitrogenation activities and MoS2 dispersion[J]. Appl Catal A:Gen, 1993, 105(1):53-68. doi: 10.1016/0926-860X(93)85133-A
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  79
  • HTML全文浏览量:  44
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-23
  • 修回日期:  2018-06-25
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2018-08-10

目录

    /

    返回文章
    返回