留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming

Taher Yousefi Amiri Jafarsadegh Moghaddas

Taher Yousefi Amiri, Jafarsadegh Moghaddas. Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 84-90.
Citation: Taher Yousefi Amiri, Jafarsadegh Moghaddas. Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming[J]. Journal of Fuel Chemistry and Technology, 2016, 44(1): 84-90.

详细信息
  • 中图分类号: O643

Reaction parameters influence on the catalytic performance of copper-silica aerogel in the methanol steam reforming

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1  Catalytic activity of copper silica aerogel in methanol steam reforming.

    (t=300 ℃, H2O/CH3OH (molar ratio)=2, Ar flow=30 mL/min, MeOH Feed=23.5 mmol·h-1·gcat-1)

    Figure  2  Effect of the feed flow rate on the methanol conversion, H2 production and CO selectivity at different temperatures (H2O/CH3OH (molar ratio)=2)

    ■: 240 ℃; ▲: 300 ℃◇: 325 ℃; ●: 350 ℃

    Figure  3  Hydrogen production rate using different molar ratio (R) of steam to methanol

    Figure  4  Effect of reaction temperature on the methanol conversion using H2O/CH3OH molar ratio of 5.0 at different liquid feed rates

    Figure  5  Effect of reaction temperature on the methanol conversion and CO selectivity using H2O/CH3OH molar ratio of 2.0 at different liquid feed rates

    Figure  6  Effect of carrier gas flow rate on the methanol conversion at different conditions

    (R: H2O/CH3OH molar ratio, F: liquid feed flow: (mL/h), t: reaction temperature (℃))

    Figure  7  Effect of carrier gas flow rate on CO selectivity at different conditions (R: H2O/CH3OH molar ratio, F: liquid feed flow: (mL/h), t: reaction temperature (℃))

    Table  1  Stability comparison of various methanol steam reforming catalysts

    Catalyst Reaction temp. t/℃ Time on stream t/h Decrease in MeOH conversion w/%
    CuO/Cr2O3/F2O3/Graphite[2] 220 100 about 30%-40% of its initial activity
    CuO/ZrO2/CeO2[2]
    CuO/ZnO/Al2O3/Graphite[2]
    Cu/La2O3/ZrO2 [5] 300 10 about 18%-24% of its initial activity
    Cu/Y2O3/ZrO2 30/20/50[5] 300 10 stable at about 70%
    Cu/Y2O3/ZrO2[5] 300 10 about 11%-32% of its initial activity
    Cu/CeO2/ZrO2[5] 300 10 about 30% of its initial activity
    Cu/Al2O3/ZrO2[5] 300 10 about 21%-32% of its initial activity
    CuO/CeO2[14] 300 40 from 98% to 90% in the first 10 h, then stable at 90%
    Cu/ZnO/Al2O3[15] 400 8 from 82% to 52%
    Cu/ZrO2[15] 400 8 from 64% to 22%
    Cu/ZnO/25%ZrO2[15] 400 24 from 93% to 70%
    40-Cu/SiO2[17] 300 6 from 95% to 84%
    Mo2C/ZrO2[24] 400 10 stable at about 90%
    Cu/ZnO/Al2O3[25] 250 8 from 39% to 33%
    50%Cu/ZnO[25] 250 8 stable at 22%-23%
    40%Cu/ZnO/ZrO2[25] 250 8 stable at 31%-32%
    50%Cu/ZnO[25] 400 7 from 89% to 69%
    40%Cu/ZnO/ZrO2[25] 400 28 from 100% to 80%
    Cu/ZnO/ZrO2/Al2O3[26] 260 5 from 98% to 92%
    ZnO/Cu/SiO2[27] 300 6 stable at 87%-88%
    CuO/ZnO/ZrO2/Al2O3[28] 250 110 about 18%-31% of its initial activity
    CuO/ZnO/Al2O3[29] 250 320 from 60% to 52%
    CuO/ZnO/Al2O3[30] 250 24 stable at about 92%-94%
    This work 300 60 stable at about 88%-92%
    下载: 导出CSV

    Table  2  Lowest temperature of the CO formation and corresponding CO selectivity at different steam to methanol molar ratios

    Steam to methanol molar ration Lowest temperature of CO formation t/℃ Liquid feed flow q/(mL·h-1) CO selectivity s/%
    1.2 325 1.2 8.8
    2.4 6.9
    4.8 5.2
    6.0 4.5
    2 325 1.2 8.2
    1.8 4.4
    3.0 0
    4.8 0
    3 350 3.0 3.4
    6.0 2.8
    9.0 2.0
    5 375 8.4 2.5
    下载: 导出CSV
  • [1] JONES S D, HAGELIN-WEAVER H E. Steam reforming of methanol over CeO2-and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3[J]. Appl Catal A: Gen, 2009, 90(1/2): 195-204.
    [2] FRANK B, JENTOFT F C, SOERIJANTO H, KRöHNERT J, SCHLÖGL R, SCHOMÖCKER R. Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics[J]. J Catal, 2007, 246(1): 177-192. doi: 10.1016/j.jcat.2006.11.031
    [3] AGRELL J, BIRGERSSON H, BOUTONNET M. Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: A kinetic analysis and strategies for suppression of CO formation[J]. J Power Sources, 2002, 106(1/2): 249-257.
    [4] SA S, SOUSA J M, MENDES A L. Steam reforming of methanol over a CuO/ZnO/Al2O3 catalyst part Ⅱ: A carbon membrane reactor[J]. Chem Eng Sci, 2011, 66(22): 5523-5530. doi: 10.1016/j.ces.2011.06.074
    [5] CLANCY P, BREEN J P, ROSS J R H. The preparation and properties of coprecipitated Cu-Zr-Y and Cu-Zr-La catalysts used for the steam reforming of methanol[J]. Catal Today, 2007, 127(1/4): 291-294. https://www.researchgate.net/publication/244321669_The_preparation_and_properties_of_coprecipitated_Cu-Zr-Y_and_Cu-Zr-La_catalysts_used_for_the_steam_reforming_of_methanol
    [6] PURNAMAA H, GIRGSDIES F, RESSLER T, SCHATTKA J H, CARUSO R A, SCHOMACKERC R, SCHLÖGL R. Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol[J]. Catal Lett, 2004, 94(1): 61-68. doi: 10.1023%2FB%3ACATL.0000019332.80287.6b
    [7] MONYANON S, LUENGNARUEMITCHAI A, PONGSTABODEE S. Optimization of methanol steam reforming over a Au/CuO-CeO2 catalyst by statistically designed experiments[J]. Fuel Process Technol, 2012, 96: 160-168. doi: 10.1016/j.fuproc.2011.12.024
    [8] TURCO M, CAMMARANO C, BAGNASCO G, MORETTI E, STORARO L, TALON A, LENARDA M. Oxidative methanol steam reforming on a highly dispersed CuO/CeO2/Al2O3 catalyst prepared by a single-step method[J]. Appl Catal B: Environ, 2009, 91(1/2): 101-107.
    [9] SZIZYBALSKI A, GIRGSDIES F, RABIS A, WANG Y, NIEDERBERGER M, RESSLER T. In situ investigations of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol[J]. J Catal, 2005, 233(2): 297-307. doi: 10.1016/j.jcat.2005.04.024
    [10] LINDSTRRÖM B, PETTERSSON L J, MENON P G. Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on alumina for methanol reforming for fuel cell vehicles[J]. Appl Catal A: Gen, 2002, 234(1/2): 111-125. https://www.researchgate.net/publication/222134899_Activity_and_characterization_of_CuZn_CuCr_and_CuZr_on_-alumina_for_methanol_reforming_for_fuel_cell_vehicles
    [11] CONANT T, KARIM A M, LEBARBIER V, WANG Y, GIRGSDIES F, SCHLOGL R, DATYE A. Stability of bimetallic Pd-Zn catalysts for the steam reforming of methanol[J]. J Catal, 2008, 257(1): 64-70. doi: 10.1016/j.jcat.2008.04.018
    [12] CHIN Y H, DAGLE R, HU J, DOHNALKOVA A C, WANG Y. Steam reforming of methanol over highly active Pd/ZnO catalyst[J]. Catal Today, 2002, 77(1/2): 79-88. http://www.sciencedirect.com/science/article/pii/S0920586102002341
    [13] TAKEZAWA N, IWASA N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals[J]. Catal Today, 1997, 36(1): 45-56. doi: 10.1016/S0920-5861(96)00195-2
    [14] UDANI P P C, GUNAWARDANA P V D S, LEE H C, KIM D H. Steam reforming and oxidative steam reforming of methanol over CuO-CeO2 catalysts[J]. Int J Hydrogen Energy, 2009, 34(18): 7648-7655. doi: 10.1016/j.ijhydene.2009.07.035
    [15] MATSUMURA Y, ISHIBE H. High temperature steam reforming of methanol over Cu/ZnO/ZrO2 catalysts[J]. Appl Catal B: Environ, 2009, 91(1/2): 524-532. https://www.researchgate.net/publication/223168970_High_temperature_steam_reforming_of_methanol_over_CuZnOZrO2_catalysts
    [16] TAKEZAWA N, KOBAYASHI H, HIROSE A, SHIMOKAWABE M, TAKAHASHI K. Steam reforming of methanol on copper-silica catalysts; effect of copper loading and calcination temperature on the reaction[J]. Appl Catal, 1982, 4(2): 127-134. doi: 10.1016/0166-9834(82)80243-1
    [17] MATSUMURA Y, ISHIBE H. Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol-gel method[J]. Appl Catal B: Environ, 2009, 86(3/4): 114-120. https://www.deepdyve.com/lp/elsevier/selective-steam-reforming-of-methanol-over-silica-supported-copper-Fns7ZTrGil
    [18] TAKAHASHI K, TAKEZAWA N, KOBAYASHI H. The mechanism of steam reforming of methanol over a copper-silica catalyst[J]. Appl Catal, 1982, 2(6): 363-366. doi: 10.1016/0166-9834(82)80154-1
    [19] DUNN B C, COLE P, COVINGTON D, WEBSTER M C, PUGMIRE R J, ERNST R D, EYRING E M, SHAH N, HUFFMAN G P. Silica aerogel supported catalysts for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen, 2005, 278(2): 233-238. doi: 10.1016/j.apcata.2004.10.002
    [20] DOMINGUEZ M, TABOADA E, MOLINS E, LLORCA J. Co-SiO2 aerogel-coated catalytic walls for the generation of hydrogen[J]. Catal Today, 2008, 138(3/4): 193-197. http://www.sciencedirect.com/science/article/pii/S0920586108002617
    [21] YOUSEFI AMIRI T, MOGHADDAS J S. Cogeled copper-silica aerogel as a catalyst in hydrogen production from methanol steam reforming[J]. Int J Hydrogen Energy, 2015, 40(3): 1472-1480. doi: 10.1016/j.ijhydene.2014.11.104
    [22] PARK G G, SEO D J, PARK S H, YOON Y G, KIM C S, YOON W L. Development of microchannel methanol steam reformer[J]. Chem Eng Sci, 2004, 101(1/3): 87-92. https://www.researchgate.net/publication/223004910_Development_of_microchannel_methanol_steam_reformer
    [23] DU X, SHEN Y, YANG L, SHI Y, YANG Y. Experiments on hydrogen production from methanol steam reforming in the microchannel reactor[J]. Int J Hydrogen Energy, 2002, 37(17): 12271-12280. https://www.researchgate.net/publication/257175072_Experiments_on_hydrogen_production_from_methanol_steam_reforming_in_the_microchannel_reactor
    [24] LIN S S Y, THOMSON W J, HAGENSEN T J, HA S Y. Steam reforming of methanol using supported Mo2C catalysts[J]. Appl Catal A: Gen, 2007, 318: 121-127. doi: 10.1016/j.apcata.2006.10.054
    [25] MATSUMURA Y, ISHIBE H. Effect of zirconium oxide added to Cu/ZnO catalyst for steam reforming of methanol to hydrogen[J]. J Mol Catal A: Chem, 2011, 345(1/2): 44-53. http://www.sciencedirect.com/science/article/pii/S1381116911002147
    [26] JEONG H, KIM K I, KIM T H, KO C H, PARK H C, SONG I K. Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst[J]. J Power Sources, 2006, 159(2): 1296-1299. doi: 10.1016/j.jpowsour.2005.11.095
    [27] MATSUMURA Y, ISHIBE H. Suppression of CO by-production in steam reforming of methanol by addition of zinc oxide to silica-supported copper catalyst[J]. J Catal, 2009, 268(2): 282-289. doi: 10.1016/j.jcat.2009.09.026
    [28] HUANG G, LIAW B J, JHANG C J, CHEN Y Z. Steam reforming of methanol over CuO/ZnO/CeO2/ZrO2/Al2O3 catalysts[J]. Appl Catal A: Gen, 2009, 358(1): 7-12. doi: 10.1016/j.apcata.2009.01.031
    [29] PURNAMA H, RESSLER T, JENTOFT R E, SOERIJANTO H, SCHLÖGL R, SCHOMÄCKER R. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst[J]. Appl Catal A: Gen, 2004, 259(1): 83-94. doi: 10.1016/j.apcata.2003.09.013
    [30] SHISHIDO T, YAMAMOTO Y, MORIOKA H, TAKAKI K, TAKEHIRA K. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol[J]. Appl Catal A: Gen, 2004, 263(2): 249-253. doi: 10.1016/j.apcata.2003.12.018
    [31] TAKAHASHI K, KOBAYASHI H, TAKEZAWA N. On the difference in reaction pathways of steam reforming of methanol over copper-silica and platinum catalysts[J]. Chem Lett, 1982, 14(6): 759-762. doi: 10.1246/cl.1985.759
    [32] BASILE A, PARMALIANA A, TOSTI S, IULIANELLI A, GALLUCCI F, ESPRO C, SPOOREN J. Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst[J]. Catal Today, 2008, 137(1): 17-22. doi: 10.1016/j.cattod.2008.03.015
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  31
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-08
  • 修回日期:  2015-11-23
  • 网络出版日期:  2022-03-23
  • 刊出日期:  2016-01-01

目录

    /

    返回文章
    返回