留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柠檬酸络合浸渍法制备的Ag-Mn/γ-Al2O3-TiO2催化剂用于丙烷催化燃烧

程丽军 刘照 袁善良 胡鑫 张彪 蒋毅

程丽军, 刘照, 袁善良, 胡鑫, 张彪, 蒋毅. 柠檬酸络合浸渍法制备的Ag-Mn/γ-Al2O3-TiO2催化剂用于丙烷催化燃烧[J]. 燃料化学学报(中英文), 2019, 47(11): 1379-1385.
引用本文: 程丽军, 刘照, 袁善良, 胡鑫, 张彪, 蒋毅. 柠檬酸络合浸渍法制备的Ag-Mn/γ-Al2O3-TiO2催化剂用于丙烷催化燃烧[J]. 燃料化学学报(中英文), 2019, 47(11): 1379-1385.
CHENG Li-jun, LIU Zhao, YUAN Shan-liang, HU Xin, ZHANG Biao, JIANG Yi. Preparation of Ag-Mn/γ-Al2O3-TiO2 catalysts by complexation-impregnation process with citric acid and its application in propane catalytic combustion[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1379-1385.
Citation: CHENG Li-jun, LIU Zhao, YUAN Shan-liang, HU Xin, ZHANG Biao, JIANG Yi. Preparation of Ag-Mn/γ-Al2O3-TiO2 catalysts by complexation-impregnation process with citric acid and its application in propane catalytic combustion[J]. Journal of Fuel Chemistry and Technology, 2019, 47(11): 1379-1385.

柠檬酸络合浸渍法制备的Ag-Mn/γ-Al2O3-TiO2催化剂用于丙烷催化燃烧

基金项目: 

四川省科技计划项目 2018GZ0314

详细信息
  • 中图分类号: TQ426

Preparation of Ag-Mn/γ-Al2O3-TiO2 catalysts by complexation-impregnation process with citric acid and its application in propane catalytic combustion

Funds: 

Sichuan Science and Technology Program 2018GZ0314

More Information
  • 摘要: 采用不同浸渍方法制备了系列Ag-Mn/γ-Al2O3-TiO2催化剂,利用BET、XRD、TEM、XPS和H2-TPR等技术对催化剂进行了表征,通过丙烷催化燃烧反应考察了催化性能。结果表明,与常规浸渍法相比,柠檬酸络合浸渍法促进了催化剂表面Ag与Mn颗粒的分散及加强了Ag与Mn之间的相互作用,从而提高了活性氧物种的相对含量和催化剂的低温还原性能,进而促进丙烷催化燃烧活性的提升。其中,络合浸渍法制备的Ag1Mn3/γ-Al2O3-TiO2催化剂在263℃时丙烷转化率即可达90%。
  • 图  1  不同方法制备的Ag-Mn/AlTi催化剂的丙烷催化燃烧活性

    Figure  1  Catalytic activity of Ag-Mn/AlTi catalysts with different methods for propane oxidation the feed gas was 0.3% C3H8 in air and GHSV=6000mL/(g·h)

    图  2  Ag/Mn物质的量比对丙烷转化的t50t90的影响

    Figure  2  Effect of Ag/Mn molar ratio on t50, t90 of propane conversion

    the feed gas was 0.3% C3H8 in air and GHSV=6000mL/(g·h)

    图  3  Ag1Mn3/AlTi(CA)催化剂在不同空速下的丙烷催化燃烧活性

    Figure  3  Propane conversion over the Ag1Mn3/AlTi(CA) catalyst under different GHSV conditions

    图  4  Ag1Mn3/AlTi(CA)催化剂的反应稳定性评价

    Figure  4  Reaction stability with time for propane oxidation over Ag1Mn3/AlTi(CA) catalyst

    图  5  催化剂的XRD谱图

    Figure  5  XRD patterns of catalysts

    a: Ag4/AlTi; b: Ag4/AlTi(CA); c: Mn4/AlTi; d: Mn4/AlTi(CA); e: Ag1Mn3/AlTi; f: Ag1Mn3/AlTi(CA)

    图  6  (a) Ag1Mn3/AlTi和(b) Ag1Mn3/AlTi(CA)催化剂的TEM照片

    Figure  6  TEM images of (a) Ag1Mn3/AlTi and (b) Ag1Mn3/AlTi(CA) catalysts

    图  7  不同催化剂的XPS谱图

    Figure  7  XPS patterns of different catalysts

    图  8  催化剂的H2-TPR谱图

    Figure  8  H2-TPR profiles of catalysts

    a: Ag4/AlTi; b: Ag4/AlTi(CA); c: Mn4/AlTi; d: Mn4/AlTi(CA); e: Ag1Mn3/AlTi; f: Ag1Mn3/AlTi(CA)

    表  1  不同催化剂的织构性质

    Table  1  Textural properties of different catalysts

    Sample Surface
    area A/
    (m2·g-1)
    Pore
    volume v/
    (cm3·g-1)
    Average
    pore diameter
    d/nm
    AlTi 163 0.41 9.9
    Ag4/AlTi 105 0.31 11.4
    Ag4/AlTi(CA) 112 0.36 10.6
    Mn4/AlTi 94 0.30 10.5
    Mn4/AlTi(CA) 122 0.34 10.4
    Ag1Mn3/AlTi 93 0.23 9.9
    Ag1Mn3/AlTi(CA) 126 0.40 11.1
    下载: 导出CSV

    表  2  催化剂的XPS数据

    Table  2  XPS results of different catalysts

    Sample Surface element contents wmol/% Ag0/
    (Ag++Ag0)
    Mnδ+/Mntotal O species contents
    Ag Mn O Al Mn2+ Mn3+ Mn4+ O O O
    Ag4/AlTi 1.80 - 64.80 33.40 42.52 - - - 32.55 47.65 19.80
    Ag4/AlTi(CA) 4.00 - 64.61 31.39 43.34 - - - 28.73 51.76 19.50
    Mn4/AlTi - 1.08 75.41 23.51 - 22.12 45.18 32.70 34.89 49.23 15.88
    Mn4/AlTi(CA) - 8.52 61.6 29.88 - 12.28 31.89 55.83 38.97 51.22 9.80
    Ag1Mn3/AlTi 0.9 1.51 72.7 24.89 33.54 22.56 39.42 38.02 32.41 52.73 14.86
    Ag1Mn3/AlTi(CA) 1.09 4.72 70.81 23.39 38.33 12.08 28.02 59.90 36.32 54.57 9.11
    下载: 导出CSV
  • [1] HUANG H, XU Y, FENG Q, DENNIS Y, LEUNG D Y C. Low temperature catalytic oxidation of volatile organic compounds:A review[J]. Catal Sci Technol, 2015, 5(5):2649-2669. doi: 10.1039/C4CY01733A
    [2] LI J, LIU H, DENG Y, LIU G, CHEN Y, YANG J. Emerging nanostructured materials for the catalytic removal of volatile organic compounds[J]. Nanotechnol Rev, 2016, 5(1):147-181. http://cn.bing.com/academic/profile?id=bcfd327dbf0299ce5bf6bf0ba5483161&encoded=0&v=paper_preview&mkt=zh-cn
    [3] BARANOWAKA K, OKAL J. Bimetallic Ru-Re/gamma-Al2O3 catalysts for the catalytic combustion of propane:Effect of the Re addition[J]. Appl Catal A:Gen, 2015, 499:158-167. doi: 10.1016/j.apcata.2015.04.023
    [4] HU Z, QIU S, YOU Y, GUO Y, GUO Y, WANG L, ZHAN W, LU G. Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane[J]. Appl Catal B:Environ, 2018, 225:110-120. doi: 10.1016/j.apcatb.2017.08.068
    [5] CHEN S, LI Y, MA F, CHEN F, LU W. The relationship between the surface oxygen species and the acidic properties of mesoporous metal oxides and their effects on propane oxidation[J]. Catal Sci Technol, 2015, 5(2):1213-1221. doi: 10.1039/C4CY01231C
    [6] HE C, CHENG J, ZHANG X, DOUTHWAITE M, PATTISSON S, HAO Z. Recent advances in the catalytic oxidation of volatile organic compounds:A review based on pollutant sorts and sources[J]. Chem Rev, 2019, 119(7):4471-4568. doi: 10.1021/acs.chemrev.8b00408
    [7] QU Z, SHEN S, CHEN D, WANG Y. Highly active Ag/SBA-15 catalyst using post-grafting method for formaldehyde oxidation[J]. J Mol Catal A:Chem, 2012, 356:171-177. doi: 10.1016/j.molcata.2012.01.013
    [8] QIN Y, QU Z, DONG C, HUANG N. Effect of pretreatment conditions on catalytic activity of Ag/SBA-15 catalyst for toluene oxidation[J]. Chin J Catal, 2017, 38(9):1603-1612. doi: 10.1016/S1872-2067(17)62842-0
    [9] 赖潇潇, 冯洁, 周晓英, 侯忠燕, 林涛, 陈耀强.钾改性Mn/Ce0.65Zr0.35O2催化剂催化氧化甲苯[J].物理化学学报, 2020, 36(x):1-10.

    LAI Xiao-xiao, FENG Jie, ZHOU Xiao-ying, HOU Zhong-yan, LIN Tao, CHE Yao-qiang. Catalytic oxidation of toluene over potassium modified Mn/Ce0.65Zr0.35O2 catalyst[J]. Acta Phys-Chim Sin, 2020, 36(x):1-10.
    [10] QIN Y, QU Z, DONG C, WANG Y, HUANG N. Highly catalytic activity of Mn/SBA-15 catalysts for toluene combustion improved by adjusting the morphology of supports[J]. J Environ Sci, 2019, 76:208-216. doi: 10.1016/j.jes.2018.04.027
    [11] WANG J, LI J, JIANG C, ZHOU P, ZHANG P, YU J. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Appl Catal B:Environ, 2017, 204:147-155. doi: 10.1016/j.apcatb.2016.11.036
    [12] WANG J, ZHANG P, LI J, JIANG C, YUNUS R, KIM J. Room-temperature oxidation of formaldehyde by layered manganese oxide:Effect of water[J]. Environ Sci Technol, 2015, 49(20):12372-12379. doi: 10.1021/acs.est.5b02085
    [13] LIN R, LIU W, ZHONG Y, LUO M. Catalyst characterization and activity of Ag-Mn complex oxides[J]. Appl Catal A:Gen, 2001, 220(1/2):165-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3404ec1c8f4ea3477a7ecf54ad540cf
    [14] DENG J, HE S, XIE S, YANG H, LIU Y, GUO G, DAI H. Ultralow loading of silver nanoparticles on Mn2O3 nanowires derived with molten salts:A high-efficiency catalyst for the oxidative removal of toluene[J]. Environ Sci Technol, 2015, 49(18):11089. doi: 10.1021/acs.est.5b02350
    [15] KHARLAMOVA T, MAMONTOV G, SALAEV M, ZAIKOVSKII V, POPOVA G, SOBOLEV V, KNYAZEV A, VODYANKINA O. Silica-supported silver catalysts modified by cerium/manganese oxides for total oxidation of formaldehyde[J]. Appl Catal A:Gen, 2013, 467(10):519-529. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d5ee243aaa1c4a94d7a762c97c265745
    [16] QU Z, BU Y, QIN Y, WANGY, FU Q. The improved reactivity of manganese catalysts by Ag in catalytic oxidation of toluene[J]. Appl Catal B:Environ, 2013, 132/133:353-362. doi: 10.1016/j.apcatb.2012.12.008
    [17] PAN H, SU Q, CHEN J, YE Q, LIU Y, SHI Y. Promotion of Ag/H-BEA by Mn for lean NO reduction with propane at low temperature[J]. Environ Sci Technol, 2009, 43(24):9348-9353. doi: 10.1021/es901504b
    [18] LUO M, YUANX, ZHENG X. Catalyst characterization and activity of Ag-Mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compounds[J]. Appl Catal A:Gen, 1998, 175(1/2):121-129. doi: 10.1016/S0926-860X(98)00210-5
    [19] 袁善良, 兰海, 薄其飞, 张彪, 肖熙, 蒋毅. TiO2掺杂CuMnCe/Al2O3催化剂对甲烷催化燃烧脱氧反应的影响[J].燃料化学学报, 2017, 45(2):243-248. doi: 10.3969/j.issn.0253-2409.2017.02.015

    YUAN Shan-liang, LAN Hai, BO Qi-fei, ZHANG Biao, XIAO Xi, JIANG Yi. Effect of TiO2 doping on methane catalytic combustion deoxidation of CuMnCe/Al2O3 catalyst[J]. J Fuel Chem Technol, 2017, 45(2):243-248. doi: 10.3969/j.issn.0253-2409.2017.02.015
    [20] PEREZ H, NAVARRO P, DELGADO J, MONTES M. Mn-SBA15 catalysts prepared by impregnation:Influence of the manganese precursor[J]. Appl Catal A:Gen, 2011, 400(1/2):238-248. doi: 10.1016/j.apcata.2011.05.002
    [21] ZHANG Y, QIN Z, WANG G, ZHU H, DONG M, LI S, WU Z, LI Z, WU Z, ZHANG J, HU T, FAN W, WANG J. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature[J]. Appl Catal B:Environ, 2013, 129:172-181. doi: 10.1016/j.apcatb.2012.09.021
    [22] XIE Y, GUO Y, GUO Y, WANG L, ZHAN W, WANG Y, GONG X, LU G. A highly effective Ni-modified MnOx catalyst for total oxidation of propane:the promotional role of nickel oxide[J]. RSC Adv, 2016, 6(55):50228-50237. doi: 10.1039/C6RA09039G
    [23] LI G, HU W, HUANG F, CHEN J, GONG M, YUAN S, CHEN Y, ZHONG L. Pd catalyst supported on ZrO2-Al2O3 by double-solvent method for methane oxidation under lean conditions[J]. Can J Chem Eng, 2017, 95(6):1117-1123. doi: 10.1002/cjce.22750
    [24] HU W, LI G, CHEN J, HUANG F, GONG M, ZHONG L, CHEN Y. Enhancement of activity and hydrothermal stability of Pd/ZrO2-Al2O3 doped by Mg for methane combustion under lean conditions[J]. Fuel, 2017, 194:368-374. doi: 10.1016/j.fuel.2016.11.028
    [25] QU Z, HUANG W, CHENG M, BAO X. Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation[J]. J Phys Chem B, 2005, 109(33):15842-15848. doi: 10.1021/jp050152m
    [26] TANG X, CHEN J, LI Y, LI Y, XU Y, SHEN W. Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts[J]. Chem EngJ, 2006, 118(1):119-125. doi: 10.1016/j.cej.2006.02.002
    [27] BAI B, QIAO Q, ARANDIYAN H, LI J, HAO J. Three-dimensional ordered mesoporous MnO2-supported Ag nanoparticles for catalytic removal of formaldehyde[J]. Environ Sci Technol, 2016, 50(5):2635-2640. doi: 10.1021/acs.est.5b03342
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  110
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-17
  • 修回日期:  2019-09-29
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-11-10

目录

    /

    返回文章
    返回