留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于密度泛函理论研究木质素二聚体Cα-OH基团的修饰对其热解均裂历程的影响

段毓 程皓 武书彬

段毓, 程皓, 武书彬. 基于密度泛函理论研究木质素二聚体Cα-OH基团的修饰对其热解均裂历程的影响[J]. 燃料化学学报(中英文), 2019, 47(12): 1440-1449.
引用本文: 段毓, 程皓, 武书彬. 基于密度泛函理论研究木质素二聚体Cα-OH基团的修饰对其热解均裂历程的影响[J]. 燃料化学学报(中英文), 2019, 47(12): 1440-1449.
DUAN Yu, CHENG Hao, WU Shu-bin. Density functional theory study on the effect of Cα-OH functional group modification on the homolytic cracking reaction routes during the pyrolysis of lignin dimer[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1440-1449.
Citation: DUAN Yu, CHENG Hao, WU Shu-bin. Density functional theory study on the effect of Cα-OH functional group modification on the homolytic cracking reaction routes during the pyrolysis of lignin dimer[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1440-1449.

基于密度泛函理论研究木质素二聚体Cα-OH基团的修饰对其热解均裂历程的影响

基金项目: 

国家自然科学基金 31870558

国家自然科学基金 31670582

详细信息
  • 中图分类号: TK6

Density functional theory study on the effect of Cα-OH functional group modification on the homolytic cracking reaction routes during the pyrolysis of lignin dimer

Funds: 

the Natural Sciences Foundation of China 31870558

the Natural Sciences Foundation of China 31670582

More Information
  • 摘要: 采用密度泛函理论方法,对四种β-O-4型二聚体木质素模型化合物2-(2-甲氧基苯氧基)-1-苯基乙烷-1-醇、2-(2-甲氧基苯氧基)-1-苯基乙烷-1-酮、1-甲氧基-2-(2-甲氧基-2-苯基乙氧基)苯、2-(2-甲氧基苯氧基)-1-苯乙基乙酸酯的Caromatic-O、Caromatic-Cα、Cα-Cβ、Cβ-O键均裂解离能进行了理论计算,并对所述二聚体的热解均裂历程进行了理论计算研究,分析了不同二聚体的热解产物形成途径。结果表明,Cβ-O键均裂是二聚体初次热解的主要反应,Cα-Cβ键均裂是竞争反应。Cα-OH官能团被氧化、乙酰化修饰后,Cβ-O键均裂解离能降低,而Cα-Cβ键的键解离能升高,Cβ-O键裂解概率增大,Cα-Cβ键均裂竞争性降低。基于上述四种模型化合物热解的主要芳香族产物有苯甲醇、甲苯、苯甲醛和愈创木酚等,Cα-OH官能团的选择性修饰可调控热解产物种类,其中,氧化修饰后的二聚体的热解产物种类变少,产物选择性增强;甲基化、乙酰化修饰后的二聚体热解可产生苯乙烷和甲苯。
  • 图  1  木质素二聚体模型化合物的化学结构式

    Figure  1  Spatial structure of lignin dimmer model compounds

    图  2  木质素模型化合物(BG1、BG2、BG3、BG4)的几何优化构型(unit: nm)

    Figure  2  Optimized geometries of lignin model compounds (BG1, BG2, BG3, and BG4; the unit for bond length is nm)

    图  3  木质素二聚体热解过程中Cα-Cβ键均裂后续反应路径示意图

    Figure  3  Proposed reaction pathways after the homolytic cleavage of Cα-Cβ bond

    图  4  木质素二聚体热解过程中Cβ-O键均裂后续反应路径示意图

    Figure  4  Proposed subsequent reaction pathways after the homolytic cleavage of Cβ-O bond

    图  5  木质素二聚体热解过程中Cβ-O键、Cα-Cβ键均裂后续反应路径的势能剖面图

    Figure  5  Potential energy profiles along subsequent reaction pathways after the homolytic cleavage of Cβ-O and Cα-Cβ bonds

    图  6  Cα-Cβ键均裂的后续反应路径中产物、中间体和过渡态的优化几何构型(单位: nm)

    Figure  6  Optimized structure of the products, intermediates and transition states in the subsequent reaction pathways after the homolytic cleavage of Cα-Cβ bond (the unit of bond lenthes is nm)

    图  7  Cβ-O键均裂的后续反应路径中产物、中间体和过渡态的优化几何构型(单位: nm)

    Figure  7  Optimized structure of the products, intermediates and transition states in the subsequent reaction pathways after the homolytic cleavage of Cβ-O bond (the unit of bond lenthes is nm)

    表  1  四种β-O-4型木质素二聚体各主要键的解离能和键长

    Table  1  Bond dissociation energies and bond lengths of four β-O-4 linkage lignin model compounds

    Bond type Dissociation energy E/(kJ·mol-1) Bond length d/nm
    BG1 BG2 BG3 BG4 BG1 BG2 BG3 BG4
    Caromatic-Cα 411.4 401.5 402.6 402.1 0.15141 0.15004 0.15167 0.15135
    Cα-Cβ 302.7 333.2 302.6 323.6 0.15213 0.15253 0.15263 0.15304
    Cβ-O 270.7 234.6 271.2 254.2 0.14214 0.14054 0.14294 0.14274
    Caromatic-O 417.5 426.7 416.3 403.3 0.13668 0.13740 0.13673 0.13689
    下载: 导出CSV
  • [1] LIU X, WEI W, WU S, LEI M, LIU Y. A promptly approach from monosaccharides of biomass to oligosaccharides via sharp-quenching thermo conversion (SQTC)[J]. Carbohydr Polym, 2018, 189:204-209. doi: 10.1016/j.carbpol.2018.01.107
    [2] LEI M, WU S, LIANG J, LIU C. Comprehensive understanding the chemical structure evolution and crucial intermediate radical in situ observation in enzymatic hydrolysis/mild acidolysis lignin pyrolysis[J]. J Anal Appl Pyrolysis, 2019, 138:249-260. doi: 10.1016/j.jaap.2019.01.004
    [3] ZOU R, WANG Y, JIANG L, YU Z, ZHAO Y, WU Q, DAI L, KE L, LIU Y, RUAN R. Microwave-assisted co-pyrolysis of lignin and waste oil catalyzed by hierarchical ZSM-5/MCM-41 catalyst to produce aromatic hydrocarbons[J]. Bioresour Technol, 2019, 289:121609. doi: 10.1016/j.biortech.2019.121609
    [4] SHUAI L, AMIRI M T, QUESTELL-SANTIAGO Y M, HEROGUEL F, LI Y, KIM H, MEILAN R, CHAPPLE C, RALPH J, LUTERBACHER J S. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J]. Science, 2016, 354(6310):329-333. doi: 10.1126/science.aaf7810
    [5] RAGAUSKAS A J, BECKHAM G T, BIDDY M J, CHANDRA R, CHEN F, DAVIS M F, DAVISON B H, DIXON R A, GILNA P, KELLER M, LANGAN P, NASKAR A K, SADDLER J N, TSCHAPLINSKI T J, TUSKAN G A, WYMAN C E. Lignin valorization:Improving lignin processing in the biorefinery[J]. Science, 2014, 344(6185):1246843. doi: 10.1126/science.1246843
    [6] DAI G, ZHU Y, YANG J, PAN Y, WANG G, WANG S, REUBROYCHAROEN P. Mechanism study on the pyrolysis of the typical ether linkages in biomass[J]. Fuel, 2019, 249:146-153. doi: 10.1016/j.fuel.2019.03.099
    [7] HA J, HWANG K, KIM Y, JAE J, KIM K H, LEE H W, KIM J, PARK Y. Recent progress in the thermal and catalytic conversion of lignin[J]. Renewable Sustainable Energy Rev, 2019, 111:422-441. doi: 10.1016/j.rser.2019.05.034
    [8] WANG S, DAI G, YANG H, LUO Z. Lignocellulosic biomass pyrolysis mechanism:A state-of-the-art review[J]. Prog Energy Combust, 2017, 62:33-86. doi: 10.1016/j.pecs.2017.05.004
    [9] ARO T, FATEHI P. Production and application of lignosulfonates and sulfonated lignin[J]. ChemSusChem, 2017, 10(9):1861-1877. doi: 10.1002/cssc.201700082
    [10] LORA J H, GLASSER W G. Recent industrial applications of lignin:A sustainable alternative to nonrenewable materials[J]. J Polym Environ, 2002, 10(1):39-48. http://cn.bing.com/academic/profile?id=cea4d37e14c1dce746b84bbd574ad545&encoded=0&v=paper_preview&mkt=zh-cn
    [11] KAWAMOTO H, RYORITANI M, SAKA S. Different pyrolytic cleavage mechanisms of β-ether bond depending on the side-chain structure of lignin dimers[J]. J Anal Appl Pyrolysis, 2008, 81(1):88-94. doi: 10.1016/j.jaap.2007.09.006
    [12] CHEN Y, FANG Y, YANG H, XIN S, ZHANG X, WANG X, CHEN H. Effect of volatiles interaction during pyrolysis of cellulose, hemicellulose, and lignin at different temperatures[J]. Fuel, 2019, 248:1-7. doi: 10.1016/j.fuel.2019.03.070
    [13] KAWAMOTO H, NAKAMURA T, SAKA S. Pyrolytic cleavage mechanisms of lignin-ether linkages:A study on p-substituted dimers and trimers[J]. Holzforschung, 2008, 62(1):50-56. doi: 10.1515/HF.2008.007
    [14] YERRAYYA A, SURIAPPARAO D V, NATARAJAN U, VINU R. Selective production of phenols from lignin via microwave pyrolysis using different carbonaceous susceptors[J]. Bioresour Technol, 2018, 270:519-528. doi: 10.1016/j.biortech.2018.09.051
    [15] JIANG W, WU S, LUCIA L A, CHU J. A comparison of the pyrolysis behavior of selected β-O-4 type lignin model compounds[J]. J Anal Appl Pyrolysis, 2017, 125:185-192. doi: 10.1016/j.jaap.2017.04.003
    [16] JIANG W, CHU J, WU S, LUCIA L A. Modeling pyrolytic behavior of pre-oxidized lignin using four representative β-ether-type lignin-like model polymers[J]. Fuel Process Technol, 2018, 176:221-229. doi: 10.1016/j.fuproc.2018.03.041
    [17] KIM J, HAFEZI-SEFAT P, CADY S, SMITH R G, BROWN R C. Premethylation of lignin hydroxyl functionality for improving storage stability of oil from solvent liquefaction[J]. Energy Fuels, 2019, 33(2):1248-1255. doi: 10.1021/acs.energyfuels.8b03894
    [18] ZHU G, QIU X, ZHAO Y, QIAN Y, PANG Y, OUYANG X. Depolymerization of lignin by microwave-assisted methylation of benzylic alcohols[J]. Bioresour Technol, 2016, 218:718-722. doi: 10.1016/j.biortech.2016.07.021
    [19] LOHR T L, LI Z, MARKS T J. Selective ether/ester C-O cleavage of an acetylated lignin model via tandem catalysis[J]. ACS Catal, 2015, 5(11):7004-7007. doi: 10.1021/acscatal.5b01972
    [20] HUANG J, LIU C, WU D, TONG H, REN L. Density functional theory studies on pyrolysis mechanism of β-O-4 type lignin dimer model compound[J]. J Anal Appl Pyrolysis, 2014, 109:98-108. doi: 10.1016/j.jaap.2014.07.007
    [21] BRITT P F, BUCHANAN A C, COONEY M J, MARTINEAU D R. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds[J]. J Org Chem, 2000, 65(5):1376-1389. doi: 10.1021/jo991479k
    [22] BESTE A, BUCHANAN A C, BRITT P F, HATHORN B C, HARRISON R J. kinetic analysis of the pyrolysis of phenethyl phenyl ether:Computational prediction of α/β-selectivities[J]. J Phys Chem A, 2007, 111:12118-12126 doi: 10.1021/jp075861+
    [23] BRITT P F, KIDDER M K, BUCHANAN A C. Oxygen substituent effects in the pyrolysis of phenethyl phenyl ethers[J]. Energy Fuels, 2007, 21(6):3102-3108. doi: 10.1021/ef700354y
    [24] HUANG X, LIU C, HUANG J, LI H. Theory studies on pyrolysis mechanism of phenethyl phenyl ether[J]. Comput Theor Chem, 2011, 976(1/3):51-59. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2dbfa3d97330434573be123ae336e556
    [25] CHEN L, YE X, LUO F, SHAO J, LU Q, FANG Y, WANG X, CHEN H. Pyrolysis mechanism of β-O-4 type lignin model dimer[J]. J Anal Appl Pyrolysis, 2015, 115:103-111. doi: 10.1016/j.jaap.2015.07.009
    [26] ASARE S O, HUANG F, LYNN B C. Characterization and sequencing of lithium cationized β-O-4 lignin oligomers using higher-energy collisional dissociation mass spectrometry[J]. Anal Chim Acta, 2019, 1047:104-114. doi: 10.1016/j.aca.2018.09.068
    [27] JARVIS M W, DAILY J W, CARSTENSEN H, DEAN A M, SHARMA S, DAYTON D C, ROBICHAUD D J, NIMLOS M R. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether[J]. J Phys Chem A, 2011, 115(4):428-438. doi: 10.1021/jp1076356
    [28] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian09[CP]. Gaussian, Inc.Pittsburgh PA, 2009.
    [29] ELDER T. A computational study of pyrolysis reactions of lignin model compounds[J]. Holzforschung, 2010, 64(4). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cce4c80ce24895d747a7bc532b60c7c
    [30] JIANG X, LU Q, HU B, LIU J, DONG C, YANG Y. Intermolecular interaction mechanism of lignin pyrolysis:A joint theoretical and experimental study[J]. Fuel, 2018, 215:386-394. doi: 10.1016/j.fuel.2017.11.084
    [31] BESTE A, BUCHANAN A C. Substituent effects on the reaction rates of hydrogen abstraction in the pyrolysis of phenethyl phenyl ethers[J]. Energy Fuels, 2010, 24(5):2857-2867. doi: 10.1021/ef1001953
    [32] PARTHASARATHI R, ROMERO R A, REDONDO A, GNANAKARAN S. Theoretical study of the remarkably diverse linkages in lignin[J]. J Phys Chem Lett, 2011, 2(20):2660-2666. doi: 10.1021/jz201201q
    [33] BESTE A, BUCHANAN A C. Kinetic simulation of the thermal degradation of phenethyl phenyl ether, a model compound for the β-O-4 linkage in lignin[J]. Chem Phys Lett, 2012, 550:19-24. doi: 10.1016/j.cplett.2012.08.040
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  36
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-29
  • 修回日期:  2019-11-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2019-12-10

目录

    /

    返回文章
    返回