留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共基质改善MFC处理链霉素废水及产电性能的研究

樊立萍 薛松

樊立萍, 薛松. 共基质改善MFC处理链霉素废水及产电性能的研究[J]. 燃料化学学报(中英文), 2017, 45(3): 370-377.
引用本文: 樊立萍, 薛松. 共基质改善MFC处理链霉素废水及产电性能的研究[J]. 燃料化学学报(中英文), 2017, 45(3): 370-377.
FAN Li-ping, XUE Song. Improvement in the performance of streptomycin wastewater MFC treatment and electricity generation by co-substrate addition[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 370-377.
Citation: FAN Li-ping, XUE Song. Improvement in the performance of streptomycin wastewater MFC treatment and electricity generation by co-substrate addition[J]. Journal of Fuel Chemistry and Technology, 2017, 45(3): 370-377.

共基质改善MFC处理链霉素废水及产电性能的研究

基金项目: 

国家自然科学基金 61143007

国家科技部中国-马其顿政府间科技合作项目 [2016]10:4-4

详细信息
    通讯作者:

    樊立萍, E-mail:flpsd@163.com

  • 中图分类号: X7

Improvement in the performance of streptomycin wastewater MFC treatment and electricity generation by co-substrate addition

Funds: 

the National Natural Science Foundation of China 61143007

the Chinese-Macedonian Scientific and Technological Cooperation Project of Ministry of Science and Technology of the People's Republic of China [2016]10:4-4

  • 摘要: 以K3[Fe(CN)6]和NaCl混合溶液为阴极液,以驯化的人工湖泊底泥为微生物菌种,以链霉素废水为阳极液,构建微生物燃料电池实验系统,研究添加共基质前后微生物燃料电池的废水处理效果与同步发电性能。结果表明,以链霉素废水为阳极液的微生物燃料电池的产电能力及废水处理效果均较差,并且随着链霉素浓度的增大而进一步恶化;但将葡萄糖作为共基质添加至阳极链霉素废水后,微生物燃料电池的产电能力和废水处理效果均显著提高。链霉素浓度为50 mg/L时,未添加共基质的微生物燃料电池处理链霉素废水的COD去除率为52%,产电电流密度为25 mA/m2,输出电压为4.72 mV;添加共基质后,COD去除率为92%,稳态产电电流密度为300 mA/m2,稳态输出电压为54 mV。
  • 图  1  微生物燃料电池实验系统示意图

    Figure  1  Schematic diagram of the microbial fuel cell (MFC) system

    图  2  湖水为阳极液时MFC输出电压 (空白实验)

    Figure  2  Voltage of MFC with lake water (blank experiment)

    图  3  湖水为阳极液时MFC电流密度 (空白实验)

    Figure  3  Current density of MFC with lake water (blank experiment)

    图  4  链霉素废水MFC的输出电压

    Figure  4  Voltage of MFC with streptomycin wastewater

    图  5  链霉素废水MFC的电流密度

    Figure  5  Current density of MFC with streptomycin wastewater

    图  6  不同浓度链霉素条件下MFC的输出电压

    Figure  6  Voltage of MFC with streptomycin of different concentrations

    图  7  不同浓度链霉素条件下MFC的电流密度

    Figure  7  Current density of MFC with streptomycin of different concentrations

    图  8  添加共基质时MFC的输出电压 (P代表葡萄糖)

    Figure  8  Voltage of MFC with glucose (P) as co-substrate

    图  9  添加共基质时MFC的电流密度 (P代表葡萄糖)

    Figure  9  Current density of MFC with with glucose (P) as co-substrate

    图  10  三种不同底物MFC的电压

    Figure  10  Voltage of MFC with three different substrate

    图  11  添加共基质前后循环伏安曲线对比

    Figure  11  Comparison of CVs with and without adding the co-substrate

    图  12  添加共基质前反应室的pH值变化

    Figure  12  pH values of subtrate before adding co-substrate

    图  13  添加共基质后反应室的pH值变化

    Figure  13  pH values of subtrate after adding co-substrate

    图  14  添加共基质前后MFC的COD去除率

    Figure  14  COD removal rate of MFC with and without co-substrate

    图  15  添加共基质前后MFC的进水和出水COD值的对比

    Figure  15  Influent and effluent COD of MFC with and without co-substrate

    表  1  不同链霉素浓度下MFC的稳态电压

    Table  1  Steady voltage of MFC with streptomycin of different concentrations

    Concentrations c/(mg·L-1) 0 5 80 290 730 2 190 3 640 4 370 5 100
    Voltage U/mV 4.8 4.8 4.7 4.6 4.5 4.2 3.3 2.7 1.8
    下载: 导出CSV

    表  2  链霉素浓度下MFC的COD去除率

    Table  2  COD removal rate of MFC with streptomycin of different concentrations

    Concentrations c/(mg·L-1) 0 5 80 290 730 2 190 3 640 4 370 5 100
    COD removal rate η/% 25.56 25.3 24.8 24.10 23.96 19.54 9.15 2.32 0.08
    下载: 导出CSV

    表  3  未添加共基质时MFC反应室的pH值

    Table  3  pH value of reaction system corresponding to MFC without co-substrates

    Concentration of streptomycin c/(mg·L-1) Cathode chamber Anode chamber
    before running after running before running after running
    10 6.61 6.73 6.78 6.65
    20 6.61 6.72 6.82 6.73
    30 6.60 6.69 6.87 6.77
    40 6.60 6.69 6.91 6.79
    50 6.62 6.72 6.96 6.85
    下载: 导出CSV

    表  4  添加共基质后MFC反应室的pH值

    Table  4  pH value of reaction system corresponding to MFC with co-substrates

    Concentration of streptomycin c/(mg·L-1) Cathode chamber Anode chamber
    before running after running before running after running
    10 6.60 6.90 6.87 6.55
    20 6.62 6.90 6.92 6.62
    30 6.61 6.88 6.95 6.66
    40 6.60 6.93 7.02 6.67
    50 6.60 6.97 7.06 6.66
    下载: 导出CSV
  • [1] KEEN P L, PATRICK D M. Tracking change:A look at the ecological footprint of antibiotics and antimicrobial resistance[J]. Antibiotics, 2013, 2(2):191-205. doi: 10.3390/antibiotics2020191
    [2] LIEN L T, HOA N Q, CHUC N T, THOA N T, PHUC H D, DIWAN V, DAT N T, TAMHANKAR A J, LUNDBORG C S. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use-a one year study from vietnam[J]. Int J Environ Res Public Health, 2016, 13(6):588. doi: 10.3390/ijerph13060588
    [3] WANG Y, LU J, WU J, LIU Q, ZHANG H, JIN S. Adsorptive removal of fluoroquinolone antibiotics using bamboo biochar[J]. Sustainability, 2015, 7(9):12947-12957. doi: 10.3390/su70912947
    [4] 令狐文生.抗生素废水处理及分析技术研究进展[J].化学试剂, 2015, 37(2):127-131. http://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201502009.htm

    LINGHU Wen-sheng. Progress on treatment and analysis of antibiotic wastewater[J]. Chem Reagents, 2015, 37(2):127-131. http://www.cnki.com.cn/Article/CJFDTOTAL-HXSJ201502009.htm
    [5] BRASCHI I, BLASIOLI S, GIGLI L, GESSA C E, ALBERTI A, MARTUCCI A. Removal of sulfonamide antibiotics from water:Evidence of adsorption into an organophilic zeolite Y by its structural modifications[J]. J Hazard Mater, 2010, 178(1/3):218-225. https://www.researchgate.net/publication/41407913_Removal_of_sulfonamide_antibiotics_from_water_Evidence_of_adsorption_into_an_organophilic_zeolite_Y_by_its_structural_modifications
    [6] DOLLIVER H, GUPTA S. Antibiotic losses in leaching and surface runoff from manure-amended agricultural land[J]. J Environ Qual, 2008, 37(3):1227-1237. doi: 10.2134/jeq2007.0392
    [7] LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process[J]. Environ Sci Technol, 2010, 44(9):3468-3473. doi: 10.1021/es903490h
    [8] AKBARPOUR-TOLOTI A, MEHRDADI N. Wastewater treatment from antibiotics plant (UASB reactor)[J]. Int J Environ Res, 2011, 5(1):241-246.
    [9] 林海龙, 宋鸽, 司亮, 余建平, 陈兆波, 吴玉凤.抗生素废水生物处理法的研究进展[J].中国农学通报, 2012, 28(11):258-261. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201211053.htm

    LIN Hai-Long, SONG Ge, SI Liang, YU Jian-Ping, CHEN Zhao-Bo, WU Yu-Feng. Advances in study on the biological treatment of antibiotic wastewater[J]. Chin Agri Sci Bull, 2012, 28(11):258-261. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201211053.htm
    [10] GULKOWSKA A, LEUNG H W, SO M K, TANIYASU S, YAMASHITA N, YEUNG L W, RICHARDSON B J, LEI A P, GIESY J P, LAM P K. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China[J]. Water Res, 2008, 42(1/2):395-403. https://www.researchgate.net/publication/6134100_Removal_of_antibiotics_from_wastewater_by_sewage_treatment_facilities_in_Hong_Kong_and_Shenzhen_China
    [11] CHEN Y S, ZHANG H B, LUO Y M, SONG J. Occurrence and dissipation of veterinary antibiotics in two typical swine wastewater treatment systems in east China[J]. Environ Monit Assess, 2012, 184(4):2205-2217. doi: 10.1007/s10661-011-2110-y
    [12] LI W W, YU H Q, HE Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies[J]. Energy Environ Sci, 2014, 7:911-924. https://www.researchgate.net/publication/270280815_Towards_sustainable_wastewater_treatment_by_using_microbial_fuel_cells-centered_technologies
    [13] LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environ Sci Technol, 2004, 38(7):2281-2285. doi: 10.1021/es034923g
    [14] PANDEY B K, MISHRA V, AGRAWAL S. Production of bio-electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Int J Eng, Sci Technol, 2011, 3(4):42-47. https://www.researchgate.net/publication/8592071_Production_of_Electricity_During_Wastewater_Treatment_Using_a_Single_Chamber_Microbial_Fuel_Cell
    [15] MATHURIYA A S. Enhanced tannery wastewater treatment and electricity generation in microbial fuel cell by bacterial strains isolated from tannery waste[J]. Environ Eng Manag J, 2014, 13(12):2945-2954.
    [16] 程李钰, 徐龙君.电极面积对老龄垃圾渗滤液为底物的微生物燃料电池性能影响[J].燃料化学学报, 2015, 43(8):1011-1017. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18683.shtml

    CHENG Li-yu, XU Long-jun. Effects of electrode surface area on the performance of microbial fuel cells with the aging landfill leachate as substrate[J]. J Fuel Chem Technol, 2015, 43(8):1011-1017. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18683.shtml
    [17] 樊立萍, 郑钰姣, 苗晓慧.阴极液及溶氧对微生物燃料电池性能的影响[J].高校化学工程学报, 2016, 30(2):491-496. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201602035.htm

    FAN Li-ping, ZHENG Yu-jiao, MIAO Xiao-hui. Effects of catholyte and dissolved oxygen on microbial fuel cell performance[J]. J Chem Eng Chin Univ, 2016, 30(2):491-496. http://www.cnki.com.cn/Article/CJFDTOTAL-GXHX201602035.htm
    [18] BOUALLAGUI H, LAHDHEB H, ROMDAN E B, RACHDI B, HAMDI M. Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition[J]. J Environ Manage, 2009, 90(5):1844-1849. doi: 10.1016/j.jenvman.2008.12.002
    [19] LU H F, ZHANG G M, LU Y F, ZHANG Y H, LI B M, CAO W. Using co-metabolism to accelerate synthetic starch wastewater degradation and nutrient recovery in photosynthetic bacterial wastewater treatment technology[J]. Environ Technol, 2016, 37(7):775-784. doi: 10.1080/09593330.2015.1084050
    [20] RASOOL K, MAHMOUD K A, LEE D S. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process[J]. J Hazard Mater, 2015, 299(12):453-461. https://www.researchgate.net/publication/280254094_Influence_of_co-substrate_on_textile_wastewater_treatment_and_microbial_community_changes_in_the_anaerobic_biological_sulfate_reduction_process
    [21] NOZARI M, SAMAEI M R, DEHGHANI M. The effect of co-metabolism on removal of hexadecane by microbial consortium from soil in a slurry sequencing batch reactor[J]. J Health Sci Surveillance Sys, 2014, 2(3):113-124. https://www.researchgate.net/publication/271139061_The_Effect_of_Co-Metabolism_on_Removal_of_Hexadecane_by_Microbial_Consortium_from_Soil_in_a_Slurry_Sequencing_Batch_Reactor
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  39
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-07
  • 修回日期:  2017-01-22
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2017-03-10

目录

    /

    返回文章
    返回